
Lab FI SEG3201-SEG3601

 1/2

Feature Interaction Analysis with Use Case Maps
Feature Interaction Detection
Using many features together in a scenario may lead to unexpected situations, even if no problem
was detected while validating the features individually.

1) Explore the scenarios that combine OCS with CND, and TL with CND. When subscribed
to these pairs of features, are there noticeable issues?

There are no noticeable issues. These feature pairs work together.

2) What happens if a user subscribes to both OCS and TL? Add a new scenario to check this

case in the FI_OCL_TL group. Do not forget to initialize the relevant variables AND add
the required start points to trigger it (and optionally add the end points expected to be
reached).

Name: OCL_TL_ActiveNotOnListSuccess
Start Points: req (SimpleConnection), enterPIN (TeenLine)
Variable Initializations: SubOCS = true, SubTL = true, SubCND = false, Busy = false,
 OnOCSlist = false, TLactive = true, PINvalid = true
End Points: ring and ringing (SimpleConnection)

3) Make sure you have Eclipse’s Problems view open.
4) If you highlight this scenario, what happens?

The scenario generates an error at the dynamic stub Screening because the selection policy of
the stub is non-deterministic: if a user subscribes to both OCS and TL, then there are two
alternative plug-ins that can be selected. This is an undesirable feature interaction.

5) In Windows Preferences jUCMNav Preferences UCM Scenario Traversal,

uncheck the Deterministic algorithm box. What happens then?

No error, but the Problems view reports that one random option was taken to solve the non-
deterministic choice. If you repeat this test many times you will realize that the tool may or
may not complain about an additional timer issue in TeenLine (enterPIN even not handled
when OCS is selected instead of TeenLine).

6) Recheck that box.

Lab FI SEG3201-SEG3601

 2/2

Feature Interaction Resolution
Your task is to modify this UCM model to resolve this conflict while leaving the other scenarios
(which work) unaffected.

• You can create new responsibilities, new paths, and new variables if necessary, but keep
the OCS and TL plug-ins separate. Do not add new stubs.

• …

There are different ways of resolving this conflict. One solution requires the following
changes to the UCM model:

o Add two new Boolean variables: ChkOCS and ChkTL.
o Add responsibility initFeatures just before the Screening stub (initializes the new

variables: ChkOCS = SubOCS; ChkTL = SubTL;
 The new variables act like local variables.

o Change the selection policy for the Screening stub:
 OCS plug-in: ChkOCS
 TeenLine plug-in: ChkTL && (!ChkOCS)
 Default plug-in: !(ChkOCS || ChkTL)

o Loop back to the Screening stub if (ChkOCS || ChkTL), continue otherwise.
o Add variable assignments to checkOCS (ChkOCS = false;) on the OCS plug-

in and to checkTime (ChkTL = false;) on the TeenLine plug-in.

This solution gives priority to OCS over TeenLine because OCS does not require user
interaction. It is not worth asking the originating user for a PIN if the call is going to be
blocked by OCS anyway…

