- 2 -

	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 17

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2005-2008
	TD 3497 Rev.3

	
	English only

Original: English

	Question(s):
	12/17
	Geneva, 7-18 April 2008

	TEMPORARY DOCUMENT

	Source:
	Rapporteur

	Title:
	New draft Recommendation Z.151: User Requirements Notation (URN)

TSB Note: this document is available in soft copy only

NEW DRAFT RECOMMENDATION Z.151: URN — USER REQUIREMENTS NOTATION

This document contains the draft specification of the User Requirements Notation, the proposed notation for the Recommendation Z.150: User Requirements Notation (URN) – Language requirements and framework. Z.151 combines the Goal-oriented Requirement Language (GRL) for non-functional requirements (URN-NFR) and the Use Case Map (UCM) notation for functional requirements (URN-FR) into a single notation.
This document combines and supersedes previous work on GRL (old draft Z.151) and UCM (old draft Z.152).
At this time, the document is quite incomplete and we still need to integrate much of the previous documents and more recent results. However, the metamodels (abstract syntax and concrete syntax, see http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/DraftZ151Metamodel) are quite stable, and sections 6.1, 6.2, 7.1, and 7.2 are illustrative of what remains to be done in sections 6 and 7.

Several comments and discussions are included in this version, together with several updates to the text and to the metamodel (more in line with draft Z.111, e.g. use of Nat).

Need to: use structure of Z.111, italic for model elements, check numbering and cross-reference scheme.

We plan to restructure this document to introduce the language on a feature-per-feature basis (more intuitive and in line with Z.111), complete it over the next few weeks, and submit it for consent in September.

NEW DRAFT RECOMMENDATION Z.151:
USER REQUIREMENTS NOTATION (URN)

SUMMARY

Scope-objective

This Recommendation defines the User Requirements Notation (URN) intended for the elicitation, analysis, specification, and validation of requirements. URN combines modelling concepts and notations for goals and intentions (mainly for non-functional requirements and quality attributes) and scenarios (mainly for operational requirements, functional requirements, and performance and architectural reasoning).

Coverage
URN has concepts for the specification of goals, non-functional requirements, rationales, behaviour, scenarios, and structuring. This Recommendation focuses on the definition of an abstract syntax, a concrete graphical syntax, and an interchange format for URN. An assessment of conformity of the current URN representation to the language requirements for URN (Recommendation Z.150) is also included.

Applications

URN is applicable within standards bodies and industry. URN helps to describe and communicate requirements, and to develop reasoning about them. The main applications areas include telecommunications systems, services, and business processes, but URN is generally suitable for describing most types of reactive systems and information systems. The range of applications is from business goals and requirements description to high-level system design and architecture.

Status/Stability

This (draft) Recommendation contains the stable definition of URN. URN components for goal modelling and scenario modelling have been used for more than a decade.
The main text is accompanied by the following:

· Annex A

…

· Appendix I

…

· Bibliography

· URN Change Request Form

Associated work

· ITU-T Recommendation Z.100 (2007), Specification and Description Language (SDL).

· ITU-T Recommendation Z.111 (2008), Notations and Guidelines for the Definition of ITU-T Languages.

· ITU-T Recommendation Z.120 (2004), Message Sequence Chart (MSC).

· ITU-T Recommendation Z.150 (2003), User Requirements Notation (URN) - Language requirements and framework
Keywords

Evaluation, functional requirements, goals, graphical notation, non-functional requirements, rationales, scenarios, specification technique.
TABLE OF CONTENTS

71
Scope

71.1
Goal modelling with URN

81.2
Scenario modelling with URN

91.3
Documentation structure

92
References

103
Definitions

104
Abbreviations and acronyms

115
Conventions

115.1
Grammars

115.2
Basic Definitions

115.2.1
Validity

115.3
Presentation style

115.3.1
Division of text

115.3.2
Titled enumeration items

126
URN basic structural features

126.1
URN specification, model elements, links, metadata, and concerns

136.1.1
URNspec

146.1.2
URNmodelElement

156.1.3
URNlink

156.1.4
Metadata

166.1.5
Concern

176.2
URN concrete grammar metaclasses

176.2.1
ConcreteURNspec

186.2.2
Description

187
GRL features

197.1
GRL basic structural features

197.1.1
GRLspec

207.1.2
GRLmodelElement

217.1.3
GRLLinkableElement

217.2
GRL actors

217.2.1
Actor

227.3
GRL intentional elements

227.3.1
IntentionalElement

237.3.2
IntentionalElementType

247.3.3
ImportanceType

247.4
GRL links

247.4.1
ElementLink

257.4.2
Contribution

267.4.3
ContributionType

267.4.4
Dependency

277.4.5
Decomposition

287.4.6
DecompositionType

297.5
GRL strategies

297.5.1
StrategiesGroup

307.5.2
EvaluationStrategy

307.5.3
Evaluation

317.5.4
QualitativeLabel

317.6
GRL concrete grammar metaclasses

337.6.1
ConcreteGRLspec

337.6.2
GRLGraph

347.6.3
ActorRef

347.6.4
GRLNode

347.6.5
IntentionalElementRef

357.6.6
CollapsedActorRef

357.6.7
LinkRef

357.6.8
Label

377.6.9
LinkRefBendpoint

377.6.10
Position

377.6.11
Size

387.6.12
ConcreteStyle

387.6.13
Comments

388
UCM features

398.1
UCM basic structural features

408.1.1
UCMspec

408.1.2
UCMmodelElement

408.2
UCM path nodes

418.2.1
UCMmap

418.2.2
PathNode

418.2.3
NodeConnection

418.2.4
Responsibility

418.2.5
RespRef

418.2.6
StartPoint

418.2.7
EndPoint

428.2.8
OrFork

428.2.9
OrJoin

428.2.10
AndFork

428.2.11
AndJoin

428.2.12
EmptyPoint

428.2.13
WaitingPlace

428.2.14
Timer

428.2.15
Connect

428.3
UCM stubs and plug-ins

428.3.1
Stub

428.3.2
PluginBinding

428.3.3
Condition

428.3.4
InBinding

428.3.5
OutBinding

438.4
UCM components

438.4.1
Component

448.4.2
ConponentType

448.4.3
ComponentKind

448.4.4
ComponentRef

448.4.5
ComponentBinding

448.5
UCM scenario definitions

448.5.1
ScenarioGroup

448.5.2
ScenarioDef

458.5.3
ScenarioStartPoint

458.5.4
ScenarioEndPoint

458.5.5
Initialization

458.5.6
Variable

458.5.7
EnumerationType

458.6
UCM performance annotations

468.6.1
Workload

468.6.2
ArrivalProcess

468.6.3
GeneralResource

468.6.4
PassiveResource

468.6.5
ActiveResource

468.6.6
ProcessingResource

468.6.7
DeviceKind

468.6.8
ExternalOperation

468.6.9
Demand

468.7
UCM concrete grammar metaclasses

478.7.1
DirectionArrow

478.7.2
ConcreteCondition

479
Data language

4710
URN interchange format

4711
URN analysis

4711.1
GRL model evaluation

4711.2
UCM scenario path traversal

4912
Compliance statement

5213
Tool compliance

5213.1
Definitions of valid tools

5213.1.1
Compliant URN tool

5213.1.2
Valid URN tool

5213.1.3
Compliant GRL tool

5213.1.4
Valid GRL tool

5213.1.5
Compliant UCM tool

5213.1.6
Valid UCM tool

5213.2
Conformance

53Annex A Summary of URN Abstract Syntax Metaclasses

TABLE OF FIGURES
11Figure 1/Z.151 Example metaclasses from an abstract grammar (white) and a concrete grammar (gray)

13Figure 2/Z.151 URN specification, links, and model elements

16Figure 3/Z.151 URN concerns

17Figure 4/Z.151 URN concrete information

17Figure 5/Z.151 URN descriptions

28Figure 6/Z.151 GRL evaluation strategies

30Figure 7/Z.151 GRL specification concepts

30Figure 8/Z.151 GRL concrete syntax metamodel elements

31Figure 9/Z.151 UCM concrete syntax metamodel elements

32Figure 10/Z.151 URN labels

33Figure 11/Z.151 URN comments

34Figure 12/Z.151 UCM specification

34Figure 13/Z.151 UCM model elements

36Figure 14/Z.151 UCM paths, stubs and plug-ins

36Figure 15/Z.151 UCM path nodes

39Figure 16/Z.151 UCM components

40Figure 17/Z.151 UCM scenario definitions

41Figure 18/Z.151 UCM performance annotations

ITU-T Draft Recommendation Z.151

User Requirements Notation (URN)
1 Scope

This Recommendation defines the User Requirements Notation (URN) intended for the elicitation, analysis, specification, and validation of requirements. URN allows software and requirements engineers to discover and specify requirements for a proposed system or an evolving system, and analyse such requirements for correctness and completeness.

URN combines modelling concepts and notations for goals and intentions (mainly for non-functional requirements and quality attributes) and scenarios (mainly for operational requirements, functional requirements, and performance and architectural reasoning). In particular, URN has concepts for the specification of goals, non-functional requirements, rationales, behaviour, scenarios, and structuring.

This Recommendation focuses on the definition of an abstract syntax, a concrete graphical syntax, and an interchange format for URN. An assessment of conformity of the current URN representation to the language requirements for URN (Recommendation Z.150) is also included.

URN is applicable within standards bodies and industry. URN helps to describe and communicate requirements, and to develop reasoning about them. The main applications areas include telecommunications systems, services, and business processes, but URN is generally suitable for describing most types of reactive systems and information systems. The range of applications is from business goals and requirements description to high-level design.
URN is a notation that complies with Recommendation Z.150. It includes concepts and notations satisfying the language requirements of Z.150’s URN-NFR (for non-functional requirements) and URN-FR (for functional requirements). URN integrates these concepts and notation into a single language.
1.1 Goal modelling with URN
The subset of the URN language that addresses Z.150 URN-NFR language requirements is named Goal-oriented Requirement Language (GRL), which is a language for supporting goal-oriented modelling and reasoning about requirements, especially non-functional requirements and quality attributes. It provides constructs for expressing various types of concepts that appear during the requirement process. GRL has its roots in two widespread goal-oriented modelling languages: i* and the NFR Framework. Major benefits of GRL over other popular notations include the integration of GRL with a scenario notation and a clear separation of GRL model elements from their graphical representation, enabling a scalable and consistent representation of multiple views/diagrams of the same goal model.
There are three main categories of concepts in GRL: actors, intentional elements, and links. The intentional elements in GRL are goals, softgoals, tasks, resources, and beliefs. They are intentional because they are used for models that allow answering questions such as why particular behaviours, informational and structural aspects were chosen to be included in the system requirements, what alternatives were considered, what criteria were used to deliberate among alternative options, and what the reasons were for choosing one alternative over the other. Actors are holders of intentions; they are the active entities in the system or its environment (e.g., stakeholders or other systems) who want goals to be achieved, tasks to be performed, resources to be available and softgoals to be satisfied. Links are used to connect isolated elements in the requirement model. Different types of links depict different structural and intentional relationships (including decompositions, contributions, and dependencies).
This kind of modelling is different from the detailed specification of “what” is to be done. Here the modeller is primarily concerned with exposing “why” certain choices for behaviour and/or structure were made or constraints introduced. The modeller is not yet interested in the operational details of processes or system requirements, or component interactions. Omitting these kinds of details during early development and standardization phases allows taking a higher level (sometimes called a strategic stance) towards modelling the current or the future standard or software system and its embedding environment. Modelling and answering “why” questions leads us to consider the opportunities stakeholders seek out and/or vulnerabilities they try to avoid within their environment by utilising capabilities of the software system and/or other stakeholders, by trying to rely upon and/or assign capabilities and by introducing constraints on how those capabilities ought to be performed.

GRL supports the analysis of strategies, which help reach the most appropriate trade-offs among (often conflicting) goals of stakeholders. A strategy consists of a set of intentional elements that are given initial satisfaction values. These satisfaction values capture contextual or future situations as well as choices among alternative means of reaching various goals. These values are then propagated to the other intentional elements through their links, enabling a global assessment of the strategy being studied as well as the global satisfaction of the actors involved. A good strategy provides rationale and documentation for decisions leading to requirements, providing better context for standards/system developers and implementers while avoiding unnecessary re-evaluations of worse alternative strategies.
GRL also provides support for reasoning about scenarios by establishing correspondences between intentional GRL elements and non-intentional elements referring to scenario models of URN-FR. Modelling both goals and scenarios is complementary and may aid in identifying further goals and additional scenarios (and scenario steps) important to stakeholders, thus contributing to the completeness and accuracy of requirements.

1.2 Scenario modelling with URN
The subset of the URN language that addresses Z.150 URN-FR language requirements is named Use Case Map (UCM). UCM specifications employ scenario paths to illustrate causal relationships among responsibilities. Furthermore, UCMs provide an integrated view of behaviour and structure by allowing the superimposition of scenario paths on a structure of abstract components. The combination of behaviour and structure enables architectural reasoning after which UCM specifications may be refined into more detailed scenario models such as MSCs and UML sequence diagrams, or into state machines in SDL or UML statechart diagrams and finally into concrete implementations. Validation, verification, performance analysis, interaction detection, and test generation can be performed at all stages. Thus, the UCM notation enables a seamless transition from the informal to the formal by bridging the modeling gap between goal models and natural language requirements (e.g. use cases) and design in an explicit and visual way. The UCM notation allows the user to delay the specification of component states and messages and even, if desired, of concrete components to later, more appropriate, stages of the development process. The goal of the UCM notation is to provide the right degree of formality at the right time in the development process.

UCM specifications identify input sources and output sinks as well as describe the required inputs and outputs of a scenario. UCM specifications also integrate many scenarios or related use cases in a map-like diagram. Scenarios can be structured and integrated incrementally. This enables reasoning about and detection of potential undesirable interactions of scenarios and components. Furthermore, the dynamic (run-time) refinement capabilities of the UCM notation allow for the specification of (run-time) policies and for the specification of loosely coupled systems where functionality is decided at runtime through negotiation between components or compliance to high-level goals. UCM scenarios can be integrated together, yet individual scenarios are tractable through scenario definitions based on a simple data model. UCMs treat scenario paths as first class model entities and therefore build the foundation to more formally facilitate reusability of scenarios and behavioural patterns across a wide range of architectures.
The UCM notation is a specification language intended for modellers as well as non-specialists because of its visual, simple, and intuitive nature but at the same time it aims to provide sufficient rigorousness for developers or tools and contracts.

Most of the characteristics of excellent requirements such as verifiable, complete, consistent, unambiguous, understandable, modifiable, and traceable can be supported by UCMs. Others such as prioritized and annotated are easily incorporated.

1.3 Documentation structure

This Recommendation defines the User Requirements Notation in the following way:
· Sections ‎2, ‎3, and ‎4 describe respectively references to related ITU-T Recommendations and other standards, definitions, and acronyms used in this Recommendation.

· Section ‎5 describes conventions used in this Recommendation, with a particular emphasis on metamodelling.

· Section ‎6 specifies the abstract syntax of basic structural features of the URN language.
· Section ‎7 specifies the abstract syntax, concrete syntax, and semantics of GRL features.
· Section ‎8 specifies the abstract syntax, concrete syntax, and semantics of UCM features.
· Section ‎9 specifies the data language used to formalize conditions and expressions.

· Section ‎10 specifies an XML-based interchange format for URN models based on the concrete syntax metamodel.
· Section ‎11 describes basic URN analysis techniques, namely GRL model evaluation and UCM scenario path traversal.
· Section ‎12 presents how Rec. Z.151 complies with Rec. Z.150.

· Section ‎13 defines levels of compliances for tools.
2 References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.
· [ITU-T Z.104] ITU-T Recommendation Z.104 (2008), Specification and Description Language (SDL): Data and action language in SDL-2008.

· [ITU-T Z.111] ITU-T Recommendation Z.111 (2008), Notations and Guidelines for the Definition of ITU-T Languages.

· [ITU-T Z.150] ITU-T Recommendation Z.150 (2003), User Requirements Notation (URN) - Language requirements and framework.
· [OMG XSD1] XML Schema Part 1: Structures Second Edition (28 October 2004)

· [OMG XSD2] XML Schema Part 2: Datatypes Second Edition (28 October 2004).
3
Definitions

This Recommendation uses the terms defined in the Definitions section in Z.150 (clause 3).

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations:

ASN.1

Abstract Syntax Notation One

COTS
Commercial-Off-The-Shelf

FR
Functional Requirements

GRL
Goal-oriented Requirement Language

ISO

International Organisation for Standardization

ITU

International Telecommunications Union

MOF

Meta Object Facility

MSC
Message Sequence Chart

NFR
Non-Functional Requirements

OMG

Object Management Group

RE

Requirements Engineering

SDL
Specification and Description Language

TTCN

Tree and Tabular Combined Notation

UCM
Use Case Map

UML
Unified Modelling Language

URN
User Requirements Notation

URN-FR
User Requirements Notation — Functional Requirements

URN-NFR
User Requirements Notation — Non-Functional Requirements

W3C

World Wide Web Consortium

XML
eXtensible Markup Language

5 Conventions

The text of this clause is not normative. Instead, it defines the conventions used for describing the User Requirements Notation.

The conventions of Rec. Z.111 apply to this Recommendation.

5.1 Grammars

The conventions of Rec. Z.111 apply to this Recommendation.
5.2 Basic Definitions

5.2.1 Validity

A specification is a valid User Requirement Notation specification only if it satisfies the syntactic rules and the static conditions defined in this Recommendation.

5.3 Presentation style

The conventions of Rec. Z.111 apply to this Recommendation.

5.3.1 Division of text

The conventions of Rec. Z.111 apply to this Recommendation.

5.3.2 Titled enumeration items

a)
Abstract grammar

The abstract grammar is specified in the form defined in Rec. Z.111. The metamodel presentation of abstract syntax in Rec. Z.111 5.4.1.2 is used. For each metaclass in the metamodel, attributes, relationships to other metaclasses, and constraints (static conditions expressed in natural language) are specified.
b)
Concrete grammar

The URN concrete grammar is presented as an extension to the abstract grammar metamodel combined with a description of the graphical symbols used. The additional concepts (shown as grey metaclasses) that extend the abstract grammar metamodel are useful to support a graphical language but they have no semantic implication. Common additional concepts include layout information, line styles, and informal descriptions. For example, in ‎Figure 1/Z.151, a color attribute is added to an element of the abstract grammar. Composition with multiplicity 0..1 is used here to ensure that specifications without this layout information are still valid and that the additional concept will not interfere during analysis.
[image: image1.emf]AbstractGrammarElement

attribute1 : String

attribute2 : Nat

LayoutInformation

color : String

0..1 1 0..1

layout

1

elem

Figure 1/Z.151 Example metaclasses from an abstract grammar (white) and a concrete grammar (grey)
Not all URN metaclasses have a concrete graphical notation. It is then up to tools to provide ways of creating, accessing, and modifying instances of these metaclasses (for instance, through a “property” window).
Many elements with a graphical representation also have model-specific coordinates and sizes. The following convention is used for layout coordinates information.

· Horizontal coordinate (X axis): an integer value representing the number of point units from the origin (0). Positive values are at the right of the origin and negative values at the left of the origin.

· Vertical coordinate (Y axis): an integer value representing the number of point units from the origin (0). Positive values are below the origin and negative values above the origin.
c)
Semantics

The semantics of the abstract grammar metaclass is expressed in natural language. The semantics of a concrete grammar metaclass is that of its abstract grammar metamodel elements (the additional grey metaclasses have no semantics).
d)
Model

Little shorthand or extra notation for URN is included, so this titled enumeration item is often absent.
e)
Example
Where necessary, examples of use are included. These examples are only informative, not normative.
6 URN basic structural features
The URN basic structural features describe containers for URN, GRL, and UCM specifications, as well as definitions of URN model elements, their links and metadata, and concerns. The abstract syntax metaclasses are first presented in section ‎6.1. Their concrete grammar references concrete syntax metaclasses regrouped in section ‎6.2.
· Section ‎6.1: URN specification, model elements, links, metadata, and concerns
· Section ‎6.2: URN concrete grammar metaclasses
6.1 URN specification, model elements, links, metadata, and concerns
The top-most metaclass, URNspec (see ‎Figure 2/Z.151), contains directly or indirectly all the other elements of a URN model, including concerns (see ‎Figure 3/Z.151). In this Recommendation, the terms “URN model” and “URN specification” are used interchangeably.

[image: image2.emf]GRLmodelElement UCMmodelElement

URNmodelElement

id : String

name : String

Metadata

name : String

value : String

0..1

0..*

elem

0..1

metadata

0..*

Concern

URNlink

type : String

1

0..*

fromElem

1

fromLinks

0..* 0..*

1

toLinks

0..*

toElem

1

UCMspec

URNspec

name : String

0..*

0..1

metadata

0..*

urnspec

0..1

1

0..*

urnspec

1

concerns

0..*

1

0..*

urnspec

1

urnLinks

0..*

1

0..1

urnspec

1

ucmspec 0..1

GRLspec

1

0..1

urnspec

1

grlspec

0..1

Figure 2/Z.151 URN specification, links, metadata, and model elements
6.1.1 URNspec

URNspec is the root element of a URN model/specification. It names the specification and serves as a container for all the other specification elements. See ‎Figure 2/Z.151.
a)
Abstract grammar

Attributes

· name (String): The name of the URN specification.
Relationships
· Composition of GRLspec (0..1): A URNspec may contain one GRL specification (see section ‎7.1.1).

· Composition of UCMspec (0..1): A URNspec may contain one UCM specification (see section ‎8.1.1).

· Composition of URNlink (0..*): A URNspec may contain URN links.

· Composition of Metadata (0..*): A URNspec may contain metadata information.

· Composition of Concern (0..*): A URNspec may contain concerns.

Constraints
a. There exists only one instance of URNspec in a URN specification.

b)
Concrete grammar
URNspec has no concrete syntax. However, it may contain additional information in an instance of ConcreteURNspec, as shown in ‎Figure 4/Z.151.
Relationships
· Composition of ConcreteURNspec (0..1): A URNspec may contain additional concrete URN information.
c)
Semantics
None (URNspec is a structural concept only).
6.1.2 URNmodelElement

URN model elements have names and unique identifiers. They can also be linked to each other. See ‎Figure 2/Z.151.
a)
Abstract grammar

Attributes

· id (String): The identifier of the URN model element.

· name (String): The name of the URN model element.

Relationships
· Composition of Metadata (0..*): A URNmodelElement may contain metadata information.

· Association with URNlink (fromLinks, 0..*): A URNmodelElement may be the source of many URN links.
· Association with URNlink (toLinks, 0..*): A URNmodelElement may be the target of many URN links.

· Association with Concern (0..1): A URNmodelElement may belong to one Concern.

· URNmodelElement is a superclass of URNlink, Concern, GRLmodelElement (see section ‎7.1.2), and UCMmodelElement (see section ‎8.1.2).
Constraints

a. id must be unique within the URN specification.
b. All instances of URNmodelElement must appear in one of its subclasses (that is, metaclass URNmodelElement is abstract).

b)
Concrete grammar
URNmodelElement has no concrete syntax. However, it may contain an informal description in an instance of Description, as shown in ‎Figure 5/Z.151.

Relationships
· Composition of Description (0..1): A URNmodelElement may contain an additional description.
c)
Semantics
A URNmodelElement is a uniquely identifiable model element that can contain metadata and be linked to other model elements. Its subclasses may have additional attributes and relationships.
6.1.3 URNlink

A URN link is a URN model element that connects a source URN model element to a target URN model element. URN links have a user-defined type. See ‎Figure 2/Z.151.
a)
Abstract grammar

Attributes

· Inherits attributes from URNmodelElement.
· type (String): The user-defined type of the URN link.
Relationships
· Inherits relationships from URNmodelElement.
· Contained by URNspec (1): URNlink instances are contained in the URN specification.

· Association with URNmodelElement (fromElem, 1): A URNlink has one source URN model element.

· Association with URNmodelElement (toElem, 1): A URNlink has one target URN model element.
Constraints

· Inherits constraints from URNmodelElement.
b)
Concrete grammar
The presence of a link on a source or target model element is indicated with a triangle symbol (►) next to the name of the element, if that element’s name is displayed in the concrete syntax.
c)
Semantics
URNlink instances provide modellers with a way to create new relationships of various types between any pair of model elements in a URN specification. These links can be used for traceability, refinement, composition, and other purposes, hence providing an extensible semantics to URN.
6.1.4 Metadata

Metadata is a name-value pair that can be used to attach information to a URN specification or its model elements. See ‎Figure 2/Z.151.
a)
Abstract grammar

Attributes

· name (String): The name of the URN metadata information instance.

· value (String): The value of the URN metadata information instance.

Relationships
· Contained by URNspec (0..1): Metadata instances may be contained in one URN specification.

· Contained by URNmodelElement (0..1): Metadata instances may be contained in one URN model element.

Constraints

a. Each Metadata instance is contained in exactly one instance either of URNspec or of URNmodelElement.

b)
Concrete grammar
None.
c)
Semantics
Metadata instances provide modellers with a way to attach user-defined named values to most elements found in a URN specification, hence providing an extensible semantics to URN.
6.1.5 Concern
A Concern is a guarded grouping of URN model elements. Concerns are typically used to group related GRL and UCM diagrams into one unit of understanding. See ‎Figure 2/Z.151 and ‎Figure 3/Z.151.
[image: image3.emf]URNmodelElement

id : String

name : String

Condition

expression : String

Concern

0..1

0..*

concern

0..1

elements

0..*

0..1 0..1

concern

0..1

condition

0..1

Figure 3/Z.151 URN concerns
a)
Abstract grammar

Attributes

· Inherits attributes from URNmodelElement.
Relationships
· Inherits relationships from URNmodelElement.
· Contained by URNspec (1): Concern instances are contained in the URN specification.

· Composition of Condition (0..1): A Concern may contain one condition (see section ‎8.3.3)
· Association with URNmodelElement (0..*): A Concern may group many URN model elements.
Constraints

a. Inherits constraints from URNmodelElement.
b)
Concrete grammar
None.
c)
Semantics
A Concern groups URN model elements together. This grouping can be guarded for composition purpose.
6.2 URN concrete grammar metaclasses
The following concrete grammar metaclasses may be contained by some of the abstract grammar metaclasses. They have no semantics.
6.2.1 ConcreteURNspec

The ConcreteURNspec metaclass contains standard meta-information about the URN model itself. See ‎Figure 4/Z.151
[image: image4.emf]URNspec

name : String

ConcreteURNspec

description : String

author : String

created : String

modified : String

specVersion : String

urnVersion : String

1

0..1

urnspec

1

info

0..1

Figure 4/Z.151 URN concrete information
a)
Abstract grammar
None. This is a concrete syntax metaclass only.
b)
Concrete grammar
There is no visual representation of this metaclass.
Attributes

· description (String): An informal description of the URN specification.

· author (String): The author of the URN specification.

· created (String): The date and time of creation of the URN specification. The suggested format is (in English) “Month day, year hours:minutes:seconds AmOrPm timezone”. For instance: “November 15, 2007 9:21:06 AM EST”.

· modified (String): The date and time of the last modification to this URN specification. The suggested format is (in English) “Month day, year hours:minutes:seconds AmOrPm timezone”. For instance: “November 15, 2007 9:21:06 AM EST”.

· specVersion (String): The version number of the URN specification. It is suggested to use an integer that starts at 1 when the specification is first created and that is incremented by one each time the specification is modified.

· urnVersion (String): The version number of the URN standard used. For instance: “Z.151 (11/08)”.

Relationships
· Contained by URNspec (1): A ConcreteURNspec is contained in the URN specification.
Constraints

a. The date modified is later than the date created.
6.2.2 Description

An informal Description can be attached to any URN model element. See ‎Figure 5/Z.151.
[image: image5.emf]Description

description : String

URNmodelElement

id : String

name : String

0..1

1

desc

0..1

elem

1

Figure 5/Z.151 URN descriptions
a)
Abstract grammar
None. This is a concrete syntax metaclass only.
b)
Concrete grammar
There is no visual representation of this metaclass.
Attributes

· description (String): An informal description of the URN model element.

Relationships
· Contained by URNmodelElement (1): A Description is contained in a URN model element.
Constraints
None.
7 GRL features
The Goal-oriented Requirement Language provides a set of URN features that enable the description and analysis of goals/intentions of systems and stakeholders. The GRL features are grouped under six categories:
· Section ‎7.1: GRL basic structural features
· Section ‎7.2: GRL actors

· Section ‎7.3: GRL intentional elements
· Section ‎7.4: GRL links
· Section ‎7.5: GRL strategies
· Section ‎7.6: GRL concrete grammar metaclasses
Note that many of the concrete grammar metaclasses defined here are also used by UCM features.
7.1 GRL basic structural features
The GRL basic structural features describe containers for GRL specifications, as well as definitions of GRL model elements, including linkable elements. The abstract grammar metaclasses are presented in this section, whereas their concrete grammar metaclasses are detailed in section ‎7.6.
7.1.1 GRLspec

GRLspec serves as a container for the GRL specification elements. See ‎Figure 6/Z.151.
[image: image6.emf]IntentionalElement

Actor ElementLink

StrategiesGroup EvaluationStrategy

GRLspec

0..*

1

intElements

0..*

grlspec

1

0..*

1

actors

0..*

grlspec

1

0..*

1

links

0..*

grlspec

1

1

0..*

grlspec

1

groups

0..*

0..*

1

strategies 0..*

grlspec

1

Figure 6/Z.151 GRL specification
a)
Abstract grammar
Attributes

None.

Relationships
· Contained by URNspec (1): The GRLspec instance is contained in the URN specification (see ‎Figure 2/Z.151).
· Composition of Actor (0..*): A GRLspec may contain actors.

· Composition of IntentionalElement (0..*): A GRLspec may contain intentional elements.

· Composition of ElementLink (0..*): A GRLspec may contain element links.
· Composition of StrategiesGroup (0..*): A GRLspec may contain strategy groups.

· Composition of EvaluationStrategy (0..*): A GRLspec may contain many evaluation strategies.

Constraints

None.

b)
Concrete grammar
GRLspec has no concrete syntax. However, it may contain concrete GRL specification information and GRL graphs, as shown in ‎Figure 9/Z.151.
Relationships
· Composition of ConcreteGRLspec (0..*): A GRLspec may contain one concrete GRL specification.
· Composition of GRLGraph (0..*): A GRLspec may contain many GRL graphs.
c)
Semantics

None (GRLspec is a structural concept only).
7.1.2 GRLmodelElement

a)
Abstract grammar
A GRLmodelElement is a URN model element specialized for GRL concepts. See ‎Figure 7/Z.151.

[image: image7.emf]GRLmodelElement

StrategiesGroup

EvaluationStrategy

IntentionalElement

Actor

GRLLinkableElement

ElementLink

0..*

1

linksDest

0..*

dest

1

0..*

1

linksSrc

0..*

src

1

Figure 7/Z.151 GRL model elements and linkable elements
Attributes

· Inherits attributes from URNmodelElement.
Relationships
· Inherits relationships from URNmodelElement.

· GRLmodelElement is a superclass of GRLLinkableElement, ElementLink, StrategiesGroup, and EvaluationStrategy.

Constraints

a. Inherits constraints from URNmodelElement.
b. All instances of GRLmodelElement must appear in one of its subclasses (that is, metaclass GRLmodelElement is abstract).
b)
Concrete grammar
None.
c)
Semantics

A GRLmodelElement is a uniquely identifiable GRL model element that can contain metadata and be linked to other model elements. Its subclasses may have additional attributes and relationships.
7.1.3 GRLLinkableElement

A GRLLinkableElement is a GRL model element that can be linked to other GRL linkable elements through an ElementLink. GRLLinkableElement abstracts the commonalities of actors and intentional elements. See ‎Figure 7/Z.151.
a)
Abstract grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

· Association with ElementLink (linksSrc, 0..*): A GRLLinkableElement may be the source of many GRL element links.

· Association with ElementLink (linksDest, 0..*): A GRLLinkableElement may be the destination of many GRL element links.
· GRLLinkableElement is a superclass of IntentionalElement and Actor.

Constraints

a. Inherits constraints from GRLmodelElement.
b. All instances of GRLLinkableElement must appear in one of its subclasses (that is, metaclass GRLLinkableElement is abstract).
b)
Concrete grammar
None.
c)
Semantics

A GRLLinkableElement is a GRL model element that can be linked to other actors and intentional elements.
7.2 GRL actors

‎Figure 8/Z.151 shows the metaclasses for GRL actors, intentional elements, and their links. It is referenced by this section as well as by sections ‎7.3 and ‎7.4.
[image: image8.emf]Contribution

contribution : ContributionType = Unknown

quantitativeContribution : Integer = 0

correlation : Boolean = false

ContributionType

Make

Help

SomePositive

Unknown

SomeNegative

Hurt

Break

<<enumeration>>

Decomposition

DecompositionType

AND

XOR

IOR

<<enumeration>>

Dependency

ImportanceType

High

Medium

Low

None

<<enumeration>>

IntentionalElementType

Softgoal

Goal

Task

Resource

Belief

<<enumeration>>

GRLLinkableElement ElementLink

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

importance : ImportanceType = None

importanceQuantitative : Integer = 0

Actor

0..* 1

linksDest

0..*

dest

1

0..*

1

linksSrc

0..*

src

1

0..*

0..1

elems

0..*

actor

0..1

Figure 8/Z.151 GRL actors, intentional elements, and links
7.2.1 Actor

An Actor is a GRL linkable element that represents an entity that has intentions and carries out actions to achieve its goals by exercising its know-how. Actors are often used to represent stakeholders as well as systems. Actors may contain intentional elements. See ‎Figure 8/Z.151.
One could start modelling the domain using only actors without intentional elements inside just to show the relationship among actors. One can also add intentional elements to specify how actors depend on each other to achieve their goals.

a)
Abstract grammar
Attributes

· Inherits attributes from GRLLinkableElement.
Relationships
· Inherits relationships from GRLLinkableElement.

· Contained by GRLspec (1): Actor instances are contained in the GRL specification (see ‎Figure 6/Z.151).
· Association with IntentionalElement (elems, 0..*): An Actor may include many intentional elements.

Constraints

a. Inherits constraints from GRLLinkableElement.

b. Any two Actors cannot share the same name inside a URN specification.

b)
Concrete grammar
An actor definition can be referenced in GRL diagrams. An actor reference is shown as a circle, with the actor name (from superclass URNmodelElement) is displayed inside the circle.
Relationships

c)
Semantics

An Actor is a GRL linkable element that may contain intentional elements, hence describing its intentions. An actor may also depend on another actor to satisfy some intentional element. How well an actor is satisfied depends on the satisfaction level and importance of the intentional elements it contains.
d)
Model

7.3 GRL intentional elements

7.3.1 IntentionalElement

An IntentionalElement is a GRL linkable element used for models that allow answering questions such as why particular behaviours, informational and structural aspects were chosen to be included in the system requirement, what alternatives were considered, what criteria were used to deliberate among alternative options, and what the reasons were for choosing one alternative over the other. Intentional elements may be included in actors and they can be linked to each other is flexible ways. There are different types of intentional elements specified. Intentional elements can be decomposed and the can be given a quantitative or qualitative importance level when included in an actor. See ‎Figure 7/Z.151.
Attributes

· Inherits attributes from GRLLinkableElement.

· type (IntentionalElementType): The type of intentional element.

· decompositionType (DecompositionType): The type of decomposition when this intentional element is the source of decomposition link, if any. Default value is AND.

· importance (ImportanceType): Qualitative importance of the intentional element to its actor, if any. Default value is None.

· importanceQuantitative (Integer): Quantitative importance of the intentional element to its actor, if any. Default value is 0.

Relationships
· Inherits relationships from GRLLinkableElement.

· Contained by GRLspec (1): IntentionalElement instances are contained in the GRL specification.
· Association with Actor (actor, 0..1): An IntentionalElement may be included in at most one actor.
Constraints

a. Inherits constraints from GRLLinkableElement.
b. importanceQuantitative (0 and importanceQuantitative (100.
Semantics

An IntentionalElement associated to an actor is held by this actor and therefore describes part of its intentions or capabilities.

The importance attributes are only taken into consideration during actor satisfaction analysis when the intentional element is included by an actor. Only the relevant importance attribute is considered depending on the type of analysis (qualitative or quantitative).

It is not required

 for importance and importanceQuantitative to be consistent as modellers may want to use only one type of analysis (qualitative or quantitative). However, it is recommended to keep them consistent if the modellers intend to switch between different types of analysis.

7.3.2 IntentionalElementType

An intentional element can be a Goal, Softgoal, Task, Resource, or Belief. See ‎Figure 7/Z.151.
Attributes

· None (enumeration metaclass).

Relationships
· Used by IntentionalElement.

Constraints

None.

Semantics
· A Goal is a condition or state of affairs in the world that the stakeholders would like to achieve. How the goal is to be achieved is not specified, allowing alternatives to be considered. A goal can be either a business goal or a system goal. A business goal expresses goals regarding the business or state of the business affairs the individual or organisation wishes to achieve. A system goal expresses goals the target system should achieve and generally describes the functional requirements of the target information system.

· A Softgoal is a condition or state of affairs in the world that the actor would like to achieve, but unlike in the concept of (hard) goal, there are no clear-cut criteria for whether the condition is achieved, and it is up to subjective judgement and interpretation of the developer to judge whether a particular state of affairs in fact achieves sufficiently the stated softgoal. Softgoals are often used to describe qualities and non-functional aspects such as security, robustness, performance, usability, etc.

· A Task specifies a particular way of doing something. When a task is part of the decomposition of a (higher-level) task, this restricts the higher-level task to that particular course of action. Tasks can also be seen as the solutions in the target system, which will address (or operationalize) goals and softgoals. These solutions provide operations, processes, data representations, structuring, constraints and agents in the target system to meet the needs stated in the goals and softgoals.

· A Resource is an (physical or informational) entity, with which the main concern is whether it is available.
· A Belief is used to represent design rationale. Beliefs make it possible for domain characteristics to be considered and properly reflected in the decision making process, hence facilitating later review, justification and change of the system, as well as enhancing traceability.

7.3.3 ImportanceType

The qualitative importance of an intentional element to its actor can be high, medium, low or none. See ‎Figure 7/Z.151.
Attributes

· None (enumeration metaclass).

Relationships
· Used by IntentionalElement.

Constraints

None.

Semantics
High is used for specifying the highest importance, Low for some non-null importance, Medium for a level in between high and low, and finally None for no importance. The satisfaction level of an intentional element with a None importance will have no impact on the qualitative evaluation of the global satisfaction of the associated actor.

7.4 GRL links

7.4.1 ElementLink

An ElementLink connects two GRL linkable elements and represents the intentional relationship existing between them. See ‎Figure 7/Z.151.
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.
· Contained by GRLspec (1): ElementLink instances are contained in the GRL specification.
· Association with GRLLinkableElement (src, 1): An ElementLink has exactly one source GRL linkable element.

· Association with GRLLinkableElement (dest, 1): An ElementLink has exactly one destination GRL linkable element.

· ElementLink is a superclass of Contribution, Dependency, and Decomposition.
Constraints

a. Inherits constraints from GRLmodelElement.
b. All instances of ElementLink must appear in one of its subclasses (that is, metaclass ElementLink is abstract).
c. The source and destination GRL linkable elements must be different.

Semantics

An ElementLink is a directed link that connects a source actor or intentional element to a different destination actor or intentional element. The semantics of the link is provided by the subclass used.
7.4.2 Contribution

A Contribution link describes how a source intentional element contributes to the satisfaction of a destination intentional element. A contribution is an effect that is a primary desire during modelling, whereas a correlation expresses knowledge about interactions between intentional elements in different categories. A correlation link is the same as a contribution link except that the correlation is not an explicit desire, but is a side effect. See ‎Figure 7/Z.151.
Attributes

· Inherits attributes from ElementLink.
· contribution (ContributionType): The qualitative level of contribution. Default value is Unknown.

· quantitativeContribution (Integer): The quantitative level of contribution. Default value is 0.

· correlation (Boolean): Indicates whether the link is a regular contribution (false) or a correlation (true). Default value is false.

Relationships
· Inherits relationships from ElementLink.
Constraints

a. Inherits constraints from ElementLink.
b. The source and destination GRL linkable elements must be intentional elements, not actors.
c. The destination intentional element must not be a resource or a belief.
d. quantitativeContribution (-100 and quantitativeContribution (100.
Semantics

A Contribution defines the level of impact that the satisfaction of a source intentional element has on the satisfaction of a destination intentional element. The impact can be qualitative (positive or negative, sufficient or insufficient

) and then contribution will be used in goal model evaluations. The impact can be also be quantitative ([-100, 100])

 and then quantitativeContribution will be used in goal model evaluations. A correlation link (correlation is true) has the same impact on an evaluation as regular contribution links, but it emphasizes side-effects between intentional elements in different categories or actors.

Semantic variations
Modellers may impose additional stylistic constraints on the well-formedness of contributions. For instance, since softgoals are the only intentional elements that can never really be fully satisfied:

e. The destination intentional element must be a softgoal.
7.4.3 ContributionType

A qualitative contribution level in a Contribution link can take one of the following values: Make, Help, SomePositive, Unknown, SomeNegative, Hurt, Break. See ‎Figure 7/Z.151.
Attributes

· None (enumeration metaclass).

Relationships
· Used by Contribution.

Constraints

None.

Semantics
The contribution of a source intentional element to a destination intentional element can be one of the following values based on the sense (positive or negative) and sufficiency of the contribution to the satisfaction of the destination intentional element:
· Make: The contribution is positive and sufficient.

· Help: The contribution is positive but not sufficient.

· SomePositive: The contribution is positive, but the extent of the contribution is unknown.

· Unknown: There is some contribution, but the extent and the sense (positive or negative) of the contribution is unknown.

· SomeNegative: The contribution is negative, but the extent of the contribution is unknown.

· Hurt: The contribution is negative but not sufficient.

· Break: The contribution of the contributing element is negative and sufficient.

7.4.4 Dependency

A Dependency link describes how a source actor (the depender) depends on a destination actor (the dependee) for an intentional element (the dependum). Often, the modeller will use two consecutive dependency links (from depender to dependum, and from dependum to dependee) to express detailed dependencies, but dependencies can be used in more generic situations as well. See ‎Figure 7/Z.151.
Attributes

· Inherits attributes from ElementLink.
Relationships
· Inherits relationships from ElementLink.
Constraints

a. Inherits constraints from ElementLink.
b. Belief intentional elements can neither be the source nor the destination of a dependency.
c. At least one of the GRL linkable elements linked by the dependency must be an actor or an intentional element contained in an actor.
Semantics
Dependencies enable reasoning about how actors depend on each other to achieve their goals. The satisfaction level of the depender is limited by the ability of the dependee to provide the dependum. Dependency links can be used in a number of configurations including but not limited to the ones described below. Depending on the level of detail and precision, intentional elements inside actors can be used as source and/or destination of a dependency link. Assume ActorSrc and ActorDest are different instances of Actor, Dep1 and Dep2 are different instances of Dependency, and IESrc, IEDest, and Dependum are different instances of IntentionalElement. An arrow (() indicates the presence of a connection between the instances involved in a link.

· ActorSrc(Dep1(Dependum (not contained in any actor) (Dep2 (ActorDest
· ActorSrc depends on ActorDest for Dependum.

·

ActorSrc(Dep1(IEDest (contained by ActorDest)

· ActorSrc depends on ActorDest for IEDest.

· IESrc (contained by ActorSrc) (Dep1(Dependum (not contained in any actor) (Dep2 (ActorDest

· IESrc in ActorSrc depends on ActorDest for Dependum.
· IESrc (contained by ActorSrc) (Dep1(IEDest (contained by ActorDest)

· IESrc in ActorSrc depends on ActorDest for IEDest.

Semantic variations

A dependency between two intentional elements can be interpreted as an upper bound of the satisfaction level of the depender based on the satisfaction level of the dependee. That is, in an evaluation of the goal model, the depender cannot be more satisfied than the dependee.

7.4.5 Decomposition

Decomposition links provide the ability to define what source intentional elements need to be satisfied or available in order for a target intentional element to be satisfied. The type of decomposition (AND, XOR, IOR) is specified by the decompositionType attribute of the target intentional element, so an intentional can be decomposed using one decomposition type only. See ‎Figure 7/Z.151.
Attributes

· Inherits attributes from ElementLink.
Relationships
· Inherits relationships from ElementLink.
Constraints

a. Inherits constraints from ElementLink.
b. Actors can neither be the source nor the destination of a decomposition.
c. Belief intentional elements can neither be the source nor the destination of a decomposition.

Semantics

Decomposition links connect the essential parts of an intentional element, which include subtasks that must be performed, subgoals that must be achieved, resources that must be accessible, and softgoals that must be satisfied.

A Decomposition link enables the hierarchical decomposition (AND) of a target intentional element by a source element. A target intentional element can be decomposed into many source intentional elements using as many decomposition links. All of the source intentional elements are necessary for the target intentional element to be satisfied.

Decomposition link also enable the description of alternative means of satisfying a target intentional element (XOR for mutually exclusive alternatives, or IOR for alternatives that are not mutually exclusive). One of the source intentional elements is sufficient for the target intentional element to be satisfied.

Semantic variations

Modellers may impose additional stylistic constraints on the well-formedness of decomposition links. For instance, tasks could be seen as the only semantically decomposable intentional element:

d. The target of a decomposition link must be a task intentional element.
7.4.6 DecompositionType

An intentional element can be decomposed in one of three ways according to its decompositionType attribute: AND, XOR, or IOR. See @@@.
Attributes

· None (enumeration metaclass).

Relationships
· Used by IntentionalElement.

Constraints

None.

Semantics
· AND decomposition: Each of the sub-intentional elements is necessary.

· XOR decomposition: One of the sub-intentional elements is sufficient, and one is selected.
· IOR decomposition: One of the sub-intentional elements is sufficient, but many can be selected.

7.5 GRL strategies

GRL strategies are sets of initial evaluation values given to some intentional elements in a GRL model. These evaluation values, which can be quantitative or qualitative, are satisfaction levels that can then be propagated to the other intentional elements in the GRL model through the various decomposition, contribution, and dependency links connecting them. Evaluations are used to determine how well goals in a model are achieved in a given context, which enables the selection of alternatives that represent appropriate trade-offs amongst the often conflicting goals of the stakeholders/actors involved. A good strategy provides rationale and documentation for decisions leading to requirements, providing better context for standards/system developers and implementers while avoiding unnecessary re-evaluations of worse alternative strategies.
[image: image9.emf]GRLmodelElement

QualitativeLabel

Denied

WeaklyDenied

WeaklySatisfied

Satisfied

Conflict

Unknown

None

<<enumeration>>

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

importance : ImportanceType = None

importanceQuantitative : Integer = 0

Evaluation

evaluation : Integer = 0

qualitativeEvaluation : QualitativeLabel = None

1

0..*

intElement

1

evals

0..*

StrategiesGroup GRLspec

0..*

1

intElements 0..*

grlspec

1

0..*

1

groups

0..*

grlspec

1

EvaluationStrategy

0..*

1

evaluations

0..*

strategies 1

0..*

1

strategies

0..*

group

1

1

0..*

grlspec

1

strategies

0..*

Figure 9/Z.151 GRL evaluation strategies

7.5.1 StrategiesGroup

See ‎Figure 8/Z.151.
a)
Abstract grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

b)
Concrete grammar
None.
c)
Semantics

d)
Model

None.
e)
Example

7.5.2 EvaluationStrategy

See ‎Figure 8/Z.151.
a)
Abstract grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

b)
Concrete grammar
None.
c)
Semantics

d)
Model

None.
e)
Example

7.5.3 Evaluation

See ‎Figure 8/Z.151.
a)
Abstract grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

b)
Concrete grammar
None.
c)
Semantics

d)
Model

None.
e)
Example

7.5.4 QualitativeLabel

See ‎Figure 8/Z.151.
a)
Abstract grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

b)
Concrete grammar
None.
c)
Semantics

d)
Model

None.
e)
Example

7.6 GRL concrete grammar metaclasses
The following concrete grammar metaclasses may be contained by some of the GRL abstract grammar metaclasses. They have no semantics.
[image: image10.emf]GRLmodelElement

IntentionalElementRef

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

importance : ImportanceType = None

importanceQuantitative : Integer = 0

0..*

1

refs

0..*

def

1

CollapsedActorRef

ConcreteStyle

lineColor : String

fillColor : String

filled : Boolean = false

0..1

0..1

style 0..1

elem

0..1

LinkRefBendpoint

x : Integer

y : Integer

ElementLink

ConcreteGRLspec

showAsMeansEnd : Boolean = false

Actor

0..*

1

collapsedRefs

0..*

actor

1

0..1

0..1

style

0..1

actor

0..1

LinkRef

curve : Boolean = false

1

0..*

linkref

1

bendpoints 0..*

{ordered}

1

0..*

link

1

refs

0..*

GRLspec

0..1

1

info

0..1

grlspec

1

Position

x : Integer

z : Integer

ActorRef

1

0..1

pos

1

actorRef

0..1

1

0..*

actorDef

1

actorRefs

0..*

GRLGraph

1

0..*

diagram

1

connections 0..*

1

0..*

grlspec

1

grlGraphs

0..*

1

0..*

diagram

1

contRefs

0..*

Size

width : Integer

height : Integer

1

0..1

size

1

actorRef

0..1

GRLNode

1

0..1

pos

1

grlNode

0..1

0..1

0..*

contRef

0..1

nodes

0..*

1

0..*

diagram

1

nodes

0..*

1

0..1

size

1

grlNode

0..1

Figure 10/Z.151 GRL concrete syntax metamodel elements
[image: image11.emf]ComponentRef

ActorRef

Size

width : Integer

height : Integer

0..1

1

actorRef

0..1

size 1

0..1 0..1

compRef

0..1

size

0..1

GRLNode

0..1 1

grlNode

0..1

size

1

[image: image12.emf]GRLNode

ActorRef

ComponentRef

Position

x : Integer

z : Integer

0..1

1

grlNode

0..1

pos

1

0..1

1

actorRef

0..1

pos

1

0..1

0..1

compRef

0..1

pos

0..1

PathNode

0..1

0..1

pathNode

0..1

pos

0..1

[image: image13.emf]IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

importance : ImportanceType = None

importanceQuantitative : Integer = 0

Actor

ConcreteStyle

lineColor : String

fillColor : String

filled : Boolean = false

0..1 0..1

elem

0..1

style

0..1

0..1 0..1

actor

0..1

style

0..1

Component

kind : ComponentKind

protected : Boolean = false

context : Boolean = false

0..1

0..1

component

0..1

style

0..1

7.6.1 ConcreteGRLspec
· showAsMeansEnd (Boolean): Indicates whether GRL OR decomposition links should be displayed with a means-end graphical syntax (true) or simply with a OR decomposition graphical syntax (false). Initial value is false.

a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.2 GRLGraph
a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.3 ActorRef
a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.4 GRLNode
a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.5 IntentionalElementRef
a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.6 CollapsedActorRef
a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.7 LinkRef
a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.8 Label

A Label can be attached to many types of URN model elements. It indicates the position of the name (or another attribute) of the element relative (in X and Y) to the position of that element.
[image: image14.emf]ComponentRef

ActorRef PathNode GRLNode

LinkRef

curve : Boolean = false

NodeConnection

probability : Nat = 100

Label

deltaX : Integer

deltaY : Integer

0..1

0..1 compRef

0..1

label

0..1

0..1

0..1

actorRef

0..1

label

0..1

0..1

0..1

pathNode

0..1

label

0..1

0..1

0..1

grlNode

0..1

label

0..1

0..1

0..1

label

0..1

linkRef

0..1

0..1

0..1

label

0..1

nodeCon

0..1

Condition

expression : String

0..1

0..1

label

0..1

condition

0..1

Figure 11/Z.151 URN labels

Attributes

· deltaX (Integer): The relative position, measured in point units, along the X axis of the relevant labelled attribute of the containing URN model element. Can be positive (to the right) or negative (to the left).

· deltaY (Integer): The relative position, measured in point units, along the Y axis of the relevant labelled attribute of the containing URN model element. Can be positive (downward) or negative (upward).

Relationships

· Contained by Condition (0..1):

· Contained by ComponentRef (0..1):

· Contained by NodeConnection (0..1):

· Contained by LinkRef (0..1):

· Contained by GRLNode (0..1):

· Contained by ActorRef. (0..1):

Constraints

a. A Label instance must be contained by exactly one instance of type Condition, ComponentRef, NodeConnection, LinkRef, GRLNodeby, or ActorRef.
7.6.9 LinkRefBendpoint
a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.10 Position
a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.11 Size
a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.12 ConcreteStyle
a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints

7.6.13 Comments

[image: image15.emf]UCMmap

singleton : Boolean = true

Comment

description : String

x : Integer

y : Integer

width : Integer

height : Integer

fillColor : String

0..*

0..1

comments

0..*

ucmmap

0..1

GRLGraph

0..*

0..1

comments

0..*

grlGraph

0..1

Figure 12/Z.151 URN comments

a)
Abstract grammar
None. This is a concrete syntax metaclass only.

b)
Concrete grammar
Attributes

· Inherits attributes from GRLmodelElement.
Relationships
· Inherits relationships from GRLmodelElement.

Constraints
8 UCM features
The Use Case Map notation provides a set of URN features that enable the description and analysis of use cases and scenarios. The UCM features are grouped under seven categories:
· Section ‎8.1: UCM basic structural features
· Section ‎8.2: UCM path nodes
· Section ‎8.3: UCM stubs and plug-ins
· Section ‎8.4: UCM components
· Section ‎8.5: UCM scenario definitions
· Section ‎8.6: UCM performance annotations
· Section ‎8.7: UCM concrete grammar metaclasses
Note that many of the concrete grammar metaclasses used by UCM features were already defined for GRL in section ‎7.6. Only the ones specific to UCM are defined in section ‎8.7.
8.1 UCM basic structural features
The UCM basic structural features describe containers for UCM specifications, as well as definitions of UCM model elements. The abstract syntax metaclasses are presented in this section. There are no specific concrete grammar metaclasses for these features.
[image: image16.emf]EnumerationType

Variable ScenarioGroup

GeneralResource

UCMmap

Component

ComponentType Responsibility

UCMspec

1

0..*

ucmspec

1 enumerationTypes

0..*

1

0..*

ucmspec

1

variables

0..*

1

0..*

ucmspec

1

scenarioGroups

0..*

1

0..*

ucmspec

1

resources

0..*

0..*

1

ucmMaps

0..*

ucmspec

1

0..*

1

components

0..*

ucmspec

1

0..*

1

componentTypes 0..*

ucmspec

1

0..*

1

responsibilities

0..*

ucmspec

1

Figure 13/Z.151 UCM specification
[image: image17.emf]UCMmodelElement Responsibility

ScenarioDef

Workload

ComponentType

Component

ComponentRef

PathNode

EnumerationType

Variable

ScenarioGroup

GeneralResource

UCMmap

Figure 14/Z.151 UCM model elements
8.1.1 UCMspec

8.1.2 UCMmodelElement

8.2 UCM path nodes
[image: image18.emf]Stub

dynamic : Boolean = false

synchronization : Boolean = false

blocking : Boolean = false

EndPoint

StartPoint

PluginBinding

id : String

probability : Nat = 100

replicationFactor : String = "1"

0..*

0..1

+bindings0..*

stub

0..1

Timer

InBinding

1..*

1

in

1..*

binding

1

0..*

1

inBindings

0..*

startPoint 1

OutBinding 1..*

1

out

1..*

binding

1

0..*

1

outBindings 0..*

endPoint 1

Condition

expression : String

0..1

0..1

pluginBinding

0..1

precondition

0..1

0..1

0..1

endPoint 0..1

postcondition

0..1

0..1

0..1

startPoint

0..1

precondition 0..1

UCMmap

singleton : Boolean = true

0..*

1

parentStub

0..*

plugin

1

NodeConnection

probability : Nat = 100

0..1

0..1

timer

0..1

timeoutPath

0..1

1

0..*

stubEntry

1

inBindings

0..*

1

0..*

stubExit

1

outBindings

0..*

0..1

0..1

nodeConnection

0..1

condition

0..1

1

0..*

diagram

1

connections

0..*

PathNode

1

0..*

diagram

1

nodes

0..*

0..*

1

succ

0..*

source

1

0..*

1

pred

0..*

target

1

Figure 15/Z.151 UCM paths, stubs and plug-ins
[image: image19.emf]Connect

OrJoin

AndJoin

StartPoint

WaitingPlace

waitType : WaitKind = None

EndPoint

Stub

dynamic : Boolean = false

synchronization : Boolean = false

blocking : Boolean = false

OrFork

AndFork

EmptyPoint

PathNode

Timer

RespRef

repetitionCount : String = "1"

hostDemand : Nat

Responsibility

expression : String

1..*

1

respRefs 1..*

respDef

1

WaitKind

None

Failure

Abort

<<enumeration>>

Figure 16/Z.151 UCM path nodes
8.2.1 UCMmap
8.2.2 PathNode

8.2.3 NodeConnection

8.2.4 Responsibility

A responsibility is a scenario activity representing something to be performed (operation, action, task, function, etc.). A responsibility can potentially be associated or allocated to a component. [Z.150, section 3.18].
8.2.5 RespRef

8.2.6 StartPoint

A precondition expresses the conditions for which an operation or scenario is defined (i.e. if the conditions are not satisfied, then the result of the operation is not defined). A precondition normally expresses a relationship between input variables, or the system state prior to execution [Z.150, section 3.14].
8.2.7 EndPoint

A postcondition expresses the condition following (successful) execution of a given operation or scenario. A postcondition normally expresses a relationship between the output variables in terms of the input variables. Where input variables may also be output variables, the relationship is defined in terms of initial system state and final system state. [Z.150, section 3.13]
8.2.8 OrFork

8.2.9 OrJoin

8.2.10 AndFork

8.2.11 AndJoin

8.2.12 EmptyPoint
8.2.13 WaitingPlace

8.2.14 Timer

8.2.15 Connect

8.3 UCM stubs and plug-ins
8.3.1 Stub

8.3.2 PluginBinding

8.3.3 Condition

8.3.4 InBinding

8.3.5 OutBinding

8.4 UCM components

[image: image20.emf]ComponentType

PathNode

Component

kind : ComponentKind

protected : Boolean = false

context : Boolean = false

0..*

0..1

includedComponent

0..*

includingComponent 0..1

0..*

0..1

instances

0..*

type

0..1

UCMmap

singleton : Boolean = true

ComponentRef

0..* 0..1

children

0..*

parent

0..1

0..1

0..* contRef

0..1

nodes

0..*

1

0..*

compDef

1

compRefs

0..*

1

0..*

diagram

1

contRefs

0..*

PluginBinding

id : String

probability : Nat = 100

replicationFactor : String = "1"

ComponentBinding

0..*

1

parentBindings

0..*

parentComponent

1

0..*

1

pluginBindings

0..*

pluginComponent

1

1

0..*

binding

1

components

0..*

ComponentKind

Team

Object

Process

Agent

Actor

Other

<<enumeration>>

Figure 17/Z.151 UCM components

8.4.1 Component

A component is a generic and abstract entity that can represent software entities (e.g. objects, processes, databases, or servers) as well as non-software entities (e.g. actors or hardware) [Z.150, section 3.3].

8.4.2 ConponentType

8.4.3 ComponentKind

8.4.4 ComponentRef

8.4.5 ComponentBinding
8.5 UCM scenario definitions
[image: image21.emf]EnumerationType

values : String

Variable

type : DatatypeKind = Boolean

0..1

0..*

enumerationType

0..1

instances

0..*

ScenarioGroup

Condition

expression : String

Initialization

value : String

1

0..*

variable

1

initializations

0..*

StartPoint EndPoint

ScenarioDef

1

0..* group

1

scenarios

0..*

0..*

0..*

parentScenarios

0..*

includedScenarios

0..*

0..*

0..1

preconditions 0..*

scenarioDefPre

0..1

0..*

0..1

postconditions

0..*

scenarioDefPost

0..1

0..*

1

initializations

0..*

scenarioDef

1

0..*

0..*

startPoints

0..*

scenarioDefs

0..*

0..*

0..*

endPoints

0..*

scenarioDefs

0..*

DatatypeKind

- Boolean

- Integer

- Enumeration

<<enumeration>>

Figure 18/Z.151 UCM scenario definitions
8.5.1 ScenarioGroup

8.5.2 ScenarioDef

A scenario is a partial description of system usage defined as a set of partially-ordered responsibilities a system performs to transform inputs to outputs while satisfying preconditions and postconditions. [Z.150, section 3.21]
8.5.3 ScenarioStartPoint

8.5.4 ScenarioEndPoint

8.5.5 Initialization

8.5.6 Variable

8.5.7 EnumerationType

8.6 UCM performance annotations
[image: image22.emf]DeviceKind

Processor

Disk

DSP

Other

<<enumeration>>

ArrivalProcess

PoissonPDF

Periodic

Uniform

PhaseType

<<enumeration>>

Workload

closed : Boolean = false

arrivalPattern : ArrivalProcess

arrivalParam1 : String

arrivalParam2 : String

externalDelay : String

value : String

coeffVarSeq : String

population : String

StartPoint

0..1

1

workload

0..1

startPoint

1

GeneralResource

multiplicity : Nat

schedPolicy : String

ActiveResource

opTime : String

PassiveResource

ProcessingResource

kind : DeviceKind

Component

kind : ComponentKind

protected : Boolean = false

context : Boolean = false

0..1

0..1

resource

0..1

component

0..1

0..1

0..*

host 0..1

components

0..*

ExternalOperation

Demand

quantity : String

1

0..*

resource 1

demands

0..*

RespRef

repetitionCount : String = "1"

hostDemand : Nat

Responsibility

expression : String

0..*

1

demands

0..*

responsibility

1

1..*

1

respRefs

1..*

respDef

1

Figure 19/Z.151 UCM performance annotations
8.6.1 Workload

8.6.2 ArrivalProcess

8.6.3 GeneralResource

8.6.4 PassiveResource

8.6.5 ActiveResource

8.6.6 ProcessingResource

8.6.7 DeviceKind

8.6.8 ExternalOperation

8.6.9 Demand

8.7 UCM concrete grammar metaclasses
[image: image23.emf]DirectionArrow

Component

kind : ComponentKind

protected : Boolean = false

context : Boolean = false

ConcreteStyle

lineColor : String

fillColor : String

filled : Boolean = false

0..1

0..1

component

0..1

style

0..1

Size

width : Integer

height : Integer

ComponentRef

0..1

0..1

compRef

0..1

size

0..1

PathNode

Position

x : Integer

z : Integer

0..1 0..1

compRef

0..1

pos

0..1

0..1

0..1

pathNode

0..1

pos

0..1

Condition

expression : String

ConcreteCondition

label : String

description : String

1 0..1

condition

1

desc

0..1

Figure 20/Z.151 UCM concrete syntax metamodel elements

8.7.1 DirectionArrow

8.7.2 ConcreteCondition

9 Data language

10 URN interchange format

11 URN analysis

11.1 GRL model evaluation

11.2 UCM scenario path traversal
The path traversal mechanism traverses a UCM by starting at one or more parallel start points as defined by the user. The actual path to be traversed is determined by the initial value of path variables as defined by the user and the changes to these values at responsibilities during the traversal. The path traversal mechanism moves from one path element to the next if continuation criteria are met. Each UCM path element has specific criteria. The traversal ends when the last end point is reached. If the traversal gets stuck before that a warning shall be issued.

The path traversal mechanism as defined below assumes a sequential implementation of parallel paths. Furthermore, the choice of which parallel path to follow at any given time may be made at random since UCMs do not provide timing information sufficient enough for a more realistic simulation of parallel paths. If the path traversal mechanism encounters a non-deterministic choice point, a warning shall be issued. The traversal, however, may continue possibly by interacting with the user or by expanding multiple scenarios.

At this moment, the requirements for the path traversal mechanism (‎Table 1/Z.151) cover all path elements (with the exception of the abort element) but do not cover any structural elements such as component instances. Asynchronous triggering of a waiting place (i.e. waiting places connected to empty points) is also not covered. Aborts and asynchronous triggering could be added to the requirements fairly easily. In the case of structural elements, however, issues surrounding the identification of new component instances and references to existing components have to be solved before requirements for the path traversal mechanism can be formulated. A similar issue exists for plug-in instances and also needs to be solved. The requirements do not explicitly address the situation where the same start point is triggered multiple times during a scenario. Finally, the recognition of implicit loops is currently not a requirement for the path traversal mechanism.

The path traversal mechanism is the basis for many advanced applications of UCMs. Most of these applications require additional capabilities. Scenario highlighting and animation can be done with the basic path traversal mechanism. The ability to associate path elements with sequence numbers indicating the order in which the path elements were traversed, however, makes repeated highlighting and animation more efficient. The generation of Message Sequence Charts requires the ability to deal with component information and a well-nestedness transformation/warning mechanism. The generation of Layered Queuing Networks requires the ability to deal with arrival and device characteristics, device demands, data access modes, and response-time requirements. Test case generation requires the ability to deal with information about controllable and observable activities. None of these additional capabilities, however, is currently a requirement for the path traversal mechanism.

Table 1/Z.151 Requirements for Path Traversal Mechanism

	ID
	Requirement

	1
	Path Traversal shall start at 1 to N parallel scenario start points as defined by the user (scenario-start).

	2
	Path Traversal shall start with initial values (true, false, or undetermined) for each path data variable as defined by the user (variable-init).

	3
	Path Traversal shall move from path element A to path element B if

a) Path Traversal is currently visiting path element A, and

b) there is a direct connection from A to B (hyperedge-connection), and

c) the path continuation condition of path element A to path element B is fulfilled.

	4
	The path continuation condition for a start point shall be fulfilled if the logical expression for its guard evaluates to true (logical-condition of start).

	5
	The path continuation condition for end points not directly connected to waiting places or timers shall be always fulfilled.

	6
	The path continuation condition for a responsibility shall be always fulfilled.

	7
	The path continuation condition for an OR-fork shall be fulfilled if the path continuation condition of exactly one branch of the OR-fork is fulfilled.

	8
	The path continuation condition for a branch of an OR-fork shall be fulfilled if the logical expression for the branch evaluates to true (branch-condition of path-branching-characteristic).

	9
	The path continuation condition for an OR-join shall be always fulfilled.

	10
	The path continuation condition for each branch of an AND-fork shall be always fulfilled.

	11
	The path continuation condition for an AND-join shall be fulfilled if Path Traversal is currently visiting the AND-join for all of its incoming paths.

	12
	The path continuation condition for a loop shall be fulfilled if the path continuation condition of exactly one branch is fulfilled (either the loop branch or the exit branch).

	13
	The path continuation condition for the loop branch shall be fulfilled if the logical expression for the loop exit evaluates to false (exit-condition of loop).

	14
	The path continuation condition for the exit branch shall be fulfilled if the logical expression for the loop exit evaluates to true (exit-condition of loop).

	15
	The path continuation condition for a static stub shall be always fulfilled.

	16
	The path continuation condition for a dynamic stub shall be fulfilled if the path continuation condition of exactly one plug-in of the dynamic stub is fulfilled.

	17
	The path continuation condition for a plug-in of a dynamic stub shall be fulfilled if the logical expression for the selection policy of the plug-in evaluates to true (branch-condition of plug-in-binding).

	18
	The path continuation condition for an end point and a waiting place connected directly with each other shall be fulfilled if

d) Path Traversal is currently visiting the end point and the waiting place and

e) the logical expression for the guard of the waiting place evaluates to true (logical-condition of waiting-place).

	19
	The path continuation condition for a waiting place shall be fulfilled if the logical expression for its guard evaluates to true (logical-condition of waiting-place).

	20
	The path continuation condition for an end point and a timer connected directly with each other shall be fulfilled if

f) Path Traversal is currently visiting the end point and the timer and

g) the path continuation condition for the non-timeout path of the timer is fulfilled.

	21
	The path continuation condition for a timer shall be fulfilled if exactly one of the following cases occurs:

h) The path continuation condition for the non-timeout path is fulfilled.

i) The path continuation condition for the timeout path is fulfilled.

	22
	The path continuation condition for a non-timeout path shall be fulfilled if

j) the timer’s timeout variable is set to false (timeout-variable of waiting-place) and

k) the timer’s guard evaluates to true (logical-condition of waiting-place).

	23
	The path continuation condition for a timeout path shall be fulfilled if

l) the timer’s timeout variable is set to true (timeout-variable of waiting-place) and

m) a timeout path exists for the timer.

	24
	The path continuation condition for an empty point shall be always fulfilled.

	25
	Path Traversal shall execute the value assignment statements of a responsibility (variable-operation-list) if the path continuation condition for the responsibility is fulfilled.

	26
	Path Traversal shall execute the value assignment statements of a responsibility in the order defined by the user.

	27
	Path Traversal shall update the values of the path data variables immediately after executing one value assignment statement.

	28
	Path Traversal shall evaluate a logical expression to undetermined if any value within the logical expression evaluates to undetermined.

	29
	Path Traversal shall stop if it cannot move to another path element from any of the currently visited path elements.

	30
	Path Traversal shall regard the values of the path variables at the time path traversal stopped as postconditions of the traversed scenario.

	31
	Path Traversal shall issue a warning if Path Traversal has stopped, and

n) Path Traversal is currently visiting one or more path elements other than end points or

o) Path Traversal is currently visiting one or more end points connected directly to waiting places or timers or

p) the postconditions of the traversed scenario do not match the postconditions defined by the user.

12 Compliance statement

The following table describes the requirements for URN-FR as described in Z.150, together with an assessment of how well the UCM notation conforms to these requirements.

Table 2/Z.151 URN-NFR compliance table

	ID
	Requirement
	Type
	R/O
	Depends On
	Conf
Status
	 Explanation

	02200
	Cross-reference operationalizations in the NFR model to responsibilities in the FR model
	B
	R
	
	C
	Through attributes and non-intentional elements which are responsibilities.

	02300
	Cross-reference performance constraints identified in the NFR model to responsibilities or scenarios in the FR model
	B
	R
	
	C
	Through attributes of performance softgoal and non-intentional elements which are responsibilities and scenarios.

	90100
	Specify ill-defined, tentative quality requirements
	NFR
	R
	
	C
	

	90200
	Specify satisficing of quality requirements
	NFR
	R
	
	C
	

	90300
	Specify refinement of quality requirements
	NFR
	R
	
	C
	

	90400
	Specify alternative refinement of quality requirements
	NFR
	O
	
	C
	

	90500
	Specify alternative functional requirements
	NFR
	R
	
	C
	

	90600
	Specify quality requirement priorities
	NFR
	R
	
	C
	A priority attribute is added to goals, softgoals.

	90700
	Specify synergies and conflicts among quality requirements
	NFR
	R
	
	C
	

	90800
	Specify argumentation during modeling
	NFR
	R
	
	C
	

	90900
	Specify multiple stakeholders’ interests
	NFR
	R
	
	C
	

	91000
	Specify business objectives
	NFR
	R
	
	C
	

	91100
	Specify links between high-level objectives and lower-level specifications
	NFR
	O
	
	C
	

	91200
	Support requirements change traceability
	NFR
	R
	
	C
	

	91300
	Support requirements priority traceability
	NFR
	R
	
	C
	

	91400
	Integrate quality and functional requirements
	B
	R
	
	C
	Reflected in 02200,02300

	91500
	Specify quantitative quality requirements
	NFR
	R
	
	P
	Attributes provide partial support. Further support will be needed

	91600
	Support incremental commitments of requirements
	NFR
	R
	
	C
	

	91700
	Knowledge base support
	NFR
	O
	
	N
	This belongs to methodology, so it is not required for the notation. GRL already has an underlying knowledge base that could be used in the future to provide know-how extraction.

	91800
	Support detection of conflicting and synergistic quality requirements
	NFR
	O
	
	N
	Needs knowledge base and Correlation catalogue support

	91900
	Ease of use but also precision
	NFR
	R
	
	C
	Supported be current level of formality.

Table 3/Z.151 UCM compliance table

	ID
	Requirement
	Type
	R/O
	Depends On
	Conf
Status
	 Explanation

	00100
	Specify the set of input events at scenario start point
	FR
	R
	
	C
	

	00200
	Specify the set of output events at scenario end point
	FR
	R
	
	C
	

	00300
	Specify preconditions at scenario start points
	FR
	R
	
	C
	

	00400
	Specify post-conditions at scenario end points
	FR
	R
	
	C
	

	00500
	Identify input sources, that is, whether the sources are human or machine
	FR
	R
	
	N
	

	00600
	Identify output sources, that is, whether the sources are human or machine
	FR
	R
	
	N
	

	00700
	Specify system operations in terms of a causal flow of responsibilities
	FR
	R
	
	C
	

	00800
	Specify alternative courses of action within a scenario
	FR
	R
	
	C
	

	00900
	Specify repetitive action within a scenario
	FR
	R
	
	C
	

	01000
	Specify parallel courses of action within a scenario
	FR
	R
	
	C
	

	01100
	Specify synchronization within a scenario
	FR
	R
	
	C
	

	01200
	Specify synchronization between scenarios
	FR
	R
	
	C
	

	01300
	Specify a lengthy scenario by way of a root map and references to child maps; child maps may have children
	FR
	R
	
	C
	

	01301
	Specify preconditions at the entry points to a child map
	FR
	R
	
	C
	

	01302
	Specify post-conditions at the exit points from a child map
	FR
	R
	
	C
	

	01400
	Group related scenarios
	FR
	R
	
	C
	

	01450
	Specify individual scenarios
	FR
	R
	
	C
	

	01500
	Specify feature interactions
	FR
	R
	
	C
	

	01600
	Specify scenarios without reference to components
	FR
	R
	
	C
	

	01700
	Specify scenarios with reference to components and the allocation of responsibilities to components
	FR
	R
	
	C
	

	01800
	Specify scenarios with reference to Commercial-Off-The-Shelf (COTS) components
	FR
	R
	
	C
	

	01900
	Specify scenarios with reference to conceptual components
	FR
	R
	
	C
	

	02000
	Specify the behaviour of the system’s environment
	FR
	R
	
	C
	Same requirements as for specifying scenarios

	02100
	Elicit requirements, that is, use the notation to reason about domain knowledge
	FR
	R
	
	C
	

	02200
	Cross-reference operationalizations in the NFR model to responsibilities in the FR model
	B
	R
	
	C
	Through attributes and non-intentional elements which are responsibilities.

	02300
	Cross-reference performance constraints identified in the NFR model to responsibilities or scenarios in the FR model
	B
	R
	
	C
	Through attributes of performance softgoal and non-intentional elements which are responsibilities and scenarios.

13 Tool compliance

This clause defines the compliance for tools that claim to support the User Requirements Notation.

The validity of a specification is defined as in ‎section ‎5.2.1.

13.1 Definitions of valid tools

13.1.1 Compliant URN tool

A tool that detects non-compliance of a description with ITU-T Rec. Z.151. If the tool handles a superset notation, it is allowed to categorize non-compliance as a warning rather than a failure.

13.1.2 Valid URN tool
A compliant URN tool that supports the graphical grammar defined in ITU T Recs. Z.151.
13.1.3 Compliant GRL tool

A tool that detects non-compliance of a GRL description with ITU-T Rec. Z.151. If the tool handles a superset notation, it is allowed to categorize non-compliance as a warning rather than a failure.

13.1.4 Valid GRL tool
A compliant UCM tool that supports the GRL graphical grammar defined in ITU T Rec. Z.151.

13.1.5 Compliant UCM tool

A tool that detects non-compliance of a UCM description with ITU-T Rec. Z.151. If the tool handles a superset notation, it is allowed to categorize non-compliance as a warning rather than a failure.

13.1.6 Valid UCM tool
A compliant UCM tool that supports the UCM graphical grammar defined in ITU T Rec. Z.151.
13.2 Conformance

A conformance statement clearly identifying the language features and requirements not supported should accompany any tool that handles a subset of ITU-T Rec. Z.151. If no conformance statement is provided, it shall be assumed that the tool is a valid URN tool. It is therefore preferable to supply a conformance statement; otherwise, any unsupported feature allows the tool to be rejected as not valid.

Annex A

 Summary of URN Abstract Syntax Metaclasses

[image: image24.emf]GRLmodelElement UCMmodelElement

URNmodelElement

id : String

name : String

Metadata

name : String

value : String

0..1

0..*

elem

0..1

metadata

0..*

Concern

URNlink

type : String

1

0..*

fromElem

1

fromLinks

0..* 0..*

1

toLinks

0..*

toElem

1

UCMspec

URNspec

name : String

0..*

0..1

metadata

0..*

urnspec

0..1

1

0..*

urnspec

1

concerns

0..*

1

0..*

urnspec

1

urnLinks

0..*

1

0..1

urnspec

1

ucmspec 0..1

GRLspec

1

0..1

urnspec

1

grlspec

0..1

[image: image25.emf]URNmodelElement

id : String

name : String

Condition

expression : String

Concern

0..1

0..*

concern

0..1

elements

0..*

0..1 0..1

concern

0..1

condition

0..1

[image: image26.emf]Contribution

contribution : ContributionType = Unknown

quantitativeContribution : Integer = 0

correlation : Boolean = false

ContributionType

Make

Help

SomePositive

Unknown

SomeNegative

Hurt

Break

<<enumeration>>

Decomposition

DecompositionType

AND

XOR

IOR

<<enumeration>>

Dependency

ImportanceType

High

Medium

Low

None

<<enumeration>>

IntentionalElementType

Softgoal

Goal

Task

Resource

Belief

<<enumeration>>

GRLmodelElement

GRLLinkableElement ElementLink 0..* 1

linksDest

0..*

dest

1

0..*

1

linksSrc

0..*

src

1

GRLspec

0..*

1

links

0..*

grlspec

1

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

importance : ImportanceType = None

importanceQuantitative : Integer = 0

0..*

1

intElements

0..*

grlspec

1

Actor

0..*

1

actors

0..*

grlspec

1

0..*

0..1

elems

0..*

actor

0..1

[image: image27.emf]GRLmodelElement

QualitativeLabel

Denied

WeaklyDenied

WeaklySatisfied

Satisfied

Conflict

Unknown

None

<<enumeration>>

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

importance : ImportanceType = None

importanceQuantitative : Integer = 0

Evaluation

evaluation : Integer = 0

qualitativeEvaluation : QualitativeLabel = None

1

0..*

intElement

1

evals

0..*

StrategiesGroup GRLspec

0..*

1

intElements 0..*

grlspec

1

0..*

1

groups

0..*

grlspec

1

EvaluationStrategy

0..*

1

evaluations

0..*

strategies 1

0..*

1

strategies

0..*

group

1

1

0..*

grlspec

1

strategies

0..*

[image: image28.emf]EnumerationType

Variable ScenarioGroup

GeneralResource

UCMmap

Component

ComponentType Responsibility

UCMspec

1

0..*

ucmspec

1 enumerationTypes

0..*

1

0..*

ucmspec

1

variables

0..*

1

0..*

ucmspec

1

scenarioGroups

0..*

1

0..*

ucmspec

1

resources

0..*

0..*

1

ucmMaps

0..*

ucmspec

1

0..*

1

components

0..*

ucmspec

1

0..*

1

componentTypes 0..*

ucmspec

1

0..*

1

responsibilities

0..*

ucmspec

1

[image: image29.emf]UCMmodelElement Responsibility

ScenarioDef

Workload

ComponentType

Component

ComponentRef

PathNode

EnumerationType

Variable

ScenarioGroup

GeneralResource

UCMmap

[image: image30.emf]Stub

dynamic : Boolean = false

synchronization : Boolean = false

blocking : Boolean = false

EndPoint

StartPoint

PluginBinding

id : String

probability : Nat = 100

replicationFactor : String = "1"

0..*

0..1

+bindings0..*

stub

0..1

Timer

InBinding

1..*

1

in

1..*

binding

1

0..*

1

inBindings

0..*

startPoint 1

OutBinding 1..*

1

out

1..*

binding

1

0..*

1

outBindings 0..*

endPoint 1

Condition

expression : String

0..1

0..1

pluginBinding

0..1

precondition

0..1

0..1

0..1

endPoint 0..1

postcondition

0..1

0..1

0..1

startPoint

0..1

precondition 0..1

UCMmap

singleton : Boolean = true

0..*

1

parentStub

0..*

plugin

1

NodeConnection

probability : Nat = 100

0..1

0..1

timer

0..1

timeoutPath

0..1

1

0..*

stubEntry

1

inBindings

0..*

1

0..*

stubExit

1

outBindings

0..*

0..1

0..1

nodeConnection

0..1

condition

0..1

1

0..*

diagram

1

connections

0..*

PathNode

1

0..*

diagram

1

nodes

0..*

0..*

1

succ

0..*

source

1

0..*

1

pred

0..*

target

1

[image: image31.emf]Connect

OrJoin

AndJoin

StartPoint

WaitingPlace

waitType : WaitKind = None

EndPoint

Stub

dynamic : Boolean = false

synchronization : Boolean = false

blocking : Boolean = false

OrFork

AndFork

EmptyPoint

PathNode

Timer

RespRef

repetitionCount : String = "1"

hostDemand : Nat

Responsibility

expression : String

1..*

1

respRefs 1..*

respDef

1

WaitKind

None

Failure

Abort

<<enumeration>>

[image: image32.emf]ComponentType

PathNode

Component

kind : ComponentKind

protected : Boolean = false

context : Boolean = false

0..*

0..1

includedComponent

0..*

includingComponent 0..1

0..*

0..1

instances

0..*

type

0..1

UCMmap

singleton : Boolean = true

ComponentRef

0..* 0..1

children

0..*

parent

0..1

0..1

0..* contRef

0..1

nodes

0..*

1

0..*

compDef

1

compRefs

0..*

1

0..*

diagram

1

contRefs

0..*

PluginBinding

id : String

probability : Nat = 100

replicationFactor : String = "1"

ComponentBinding

0..*

1

parentBindings

0..*

parentComponent

1

0..*

1

pluginBindings

0..*

pluginComponent

1

1

0..*

binding

1

components

0..*

ComponentKind

Team

Object

Process

Agent

Actor

Other

<<enumeration>>

[image: image33.emf]EnumerationType

values : String

Variable

type : DatatypeKind = Boolean

0..1

0..*

enumerationType

0..1

instances

0..*

ScenarioGroup

Condition

expression : String

Initialization

value : String

1

0..*

variable

1

initializations

0..*

StartPoint EndPoint

ScenarioDef

1

0..* group

1

scenarios

0..*

0..*

0..*

parentScenarios

0..*

includedScenarios

0..*

0..*

0..1

preconditions 0..*

scenarioDefPre

0..1

0..*

0..1

postconditions

0..*

scenarioDefPost

0..1

0..*

1

initializations

0..*

scenarioDef

1

0..*

0..*

startPoints

0..*

scenarioDefs

0..*

0..*

0..*

endPoints

0..*

scenarioDefs

0..*

DatatypeKind

- Boolean

- Integer

- Enumeration

<<enumeration>>

[image: image34.emf]DeviceKind

Processor

Disk

DSP

Other

<<enumeration>>

ArrivalProcess

PoissonPDF

Periodic

Uniform

PhaseType

<<enumeration>>

Workload

closed : Boolean = false

arrivalPattern : ArrivalProcess

arrivalParam1 : String

arrivalParam2 : String

externalDelay : String

value : String

coeffVarSeq : String

population : String

StartPoint

0..1

1

workload

0..1

startPoint

1

GeneralResource

multiplicity : Nat

schedPolicy : String

ActiveResource

opTime : String

PassiveResource

ProcessingResource

kind : DeviceKind

Component

kind : ComponentKind

protected : Boolean = false

context : Boolean = false

0..1

0..1

resource

0..1

component

0..1

0..1

0..*

host 0..1

components

0..*

ExternalOperation

Demand

quantity : String

1

0..*

resource 1

demands

0..*

RespRef

repetitionCount : String = "1"

hostDemand : Nat

Responsibility

expression : String

0..*

1

demands

0..*

responsibility

1

1..*

1

respRefs

1..*

respDef

1

Appendix I

<Appendix Title>

(This appendix does not form an integral part of this Recommendation)

<Body of appendix I>

URN Change Request Form

	Please fill in the following details

	Character of change:
	 error correction
	 clarification

	
	 simplification
	 extension

	
	 modification
	 decommission

	Short summary of change request

	Short justification of the change request

	Have you consulted other users
	 yes
	 no

	Is this view shared in your organization
	 yes
	 no

	How many users do you represent?
	 1-5
	 6-10

	
	 11-100
	 over 100

	Your name and address

Please attach further sheets with details if necessary

URN (Z.150) Rapporteur, c/o ITU-T, Place des Nations, CH-1211, Geneva 20, Switzerland. Fax: +41 22 730 5853, e‑mail: URN.rapporteur@itu.int.

�To be revised for final version

�To be completed if needed

�To be sent for consent in September 2008

�Due this September. Use old SDL? Mention Z.100?

�Due this September. Will help avoiding references to UML and OCL, requiring A5 documents.

�Needed? Hopefully not.

�Need to add terms?

Do language elements (e.g. actor, softgoal) have to be defined here?

�Not used at this point

�Not used at this point

�Should ITU-T be added

�Not used at this point

�Only used in reference to XML schema standards

�Not used at this point

�Not used at this point

�Not used at this point

�NEW! Entirely revised section. Now refers to Z.111.

�Should we say that at the most 1 ConcreteURNspec can exist in the specification (since URNspec is a singleton)

�No need to. This is implicit. Only necessary constraints are included here.

�To be completed

�Discuss actors with boundaries only?

�It may not be required, but it would be very strange if they are inconsistent. If quantitative analysis says an actor is satisfied, but qualitative analysis says they are dissatisfied, that would be a strange result. It could be a bi-product of the different ways of propagating values in both methods (rounding, etc.) or it could be a product of inconsistencies in initial values like this one.

�I expect them to be inconsistent on many occasions. If I change the quantitative attribute, a tool may keep the other qualitative attribute consistent (using some mapping), or not. I would leave this out as a tool issue. I have added a note.

�It might be confusing to include both uses. So when I see a belief in a GRL model I don’t know if it’s something that an actor in the model believes which motives his/her decision, or something that the modeller is thinking.

�I agree. I will:

- Keep beliefs as IEs only

- Remove BeliefLink from the abstract syntax (done)

- Add (later) a generic comment mechanism to GRL and UCM in the concrete syntax.

�Does this have to be specified? If you have a qualitative field for importance of an actor, one can put in any qualitative scale they want. High, Medium-high, medium, medium-low, low, or whatever.

�I think we should decide now, just like we have explicit enumerations for contribution levels and satisfaction levels.

But I’m open to adding more levels of importance. (Would not go beyond 5-6 however)

�Is this actually used in your quantitative evaluation procedure? I thought that you used +, ++, - and – (Make, help, hurt, break), and that these were converted to +-0.5 and +-1.0. I guess this is an expansion to this procedure. Now people may need to put numbers on all the contribution links if they want quantitative eval? Or does it default back to +-0.5/1.0. It makes sense for quantitative analysis but brings up some other issues. Where do these numbers come from? What do they mean? Is it too much effort to add them to all links? What if they add numbers to some links and not others?

�Yes, we must not confuse jUCMNav’s (experimental) analysis approach and the standard. As for the other qualitative/quantitative issues, consistency would not be required and mappings would be out of scope. Switching/mixing them would be left to tools to handle.

�It might be good to refer to the contribution type section below 6.2.10. When I first read this I thought you weren’t specifying the types specifically anymore.

�Will be refactored as per my previous message. Will help.

�Is this standard for GRL or specific to a certain approach to evaluation.

�In the standard.

�The Equal contribution type was removed long ago. Any issue with this?

�No, I don’t ever see it used in i*. I think it comes from the NFR framework.

�This is what I would call the “SD” version, the typical i* SD dependency.

�Indeed.

�SD on the left, SR on the right without a dependum.

�SR on the left, SD on the right, with a dependum

�Full SR version without a dependum.

�Yes.

�So assuming you don’t want to differentiate between left and right, for example ActorSrc(Dep1(IEDest (contained by ActorDest)� is the same case as IEDest->Dep1->ActorSrc, then I still think you might be missing a case. You are covering the cases where both actors are closed/one actor is closed/no actors are closed and where there is a dependum and there isn’t a dependum. So you should have 6 cases:�Both actors closed with dependum (as you have it)

Both actors closed without dependum (this seems strange, but it is also strange to restrict against this when generally, your syntax is very non-restrictive in terms on link combinations)

One actor closed, one open, with dependum (you have this)

Same without dependum (you have this)

Both actors open with dependum (you’re missing this one, if you allow the typical SD link, it makes sense to allow a dependum in SR models too)

Both actors open without dependum (you have this)

�You are right. I knew this was not complete (hence the “including but not limited to the ones described below”). Both actors closed without a dependum is not something that would have meaning I think, in any goal-oriented modelling I know, so I did not include it. But this can be discussed further.

�This makes sense to me, but in the way it seemed to be implemented in the paper there was some part where the evaluation values of dependums were defaulted to 0 quite often. Maybe I misunderstood, but it seems a very pessimistic way to evaluate, I couldn’t envision a scenario where an element that depends on another element could ever be more than 0! (Something must be wrong with my understanding). When we evaluate dependencies for “hard” elements, I just take the min of the incoming dependency and whatever other relationships the element is involved in, so it will never be higher than the dependency. When we evaluate them for softgoals, the dependum contributes like a "Make" link. This relates to my point later about evaluation. I'm not sure yet that there is a "standar" way to go about it.

�We can have many semantic variations, or emphasize these points in the analysis section.

�Then why is it an intentional element? I’m confused about that. It seems that in the case where it is documenting modeller notes, it’s not intentional, and maybe it’s also not intentional if it’s documenting beliefs of the actor?

�Move to GRL spec

�Move to another section…

�To be completed.

�Completion and integration of the data language defined in � HYPERLINK "http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/HelpOnLine#BNF_Grammar" ��http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/HelpOnLine#BNF_Grammar� (supports a concrete syntax compatible with Java and SDL). The EBNF used needs to be in line with Z.111 however.

�XML schema corresponding to the concrete syntax metamodel (XSD file hopefully generated automatically). An example can be found at � HYPERLINK "http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/DraftZ151Metamodel#XML_Schema" ��http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/DraftZ151Metamodel#XML_Schema�

�To be revised and completed based on the theses of Jason Kealey and Jean-François Roy (� HYPERLINK "http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/UCMVirtualLibrarySearchAll?all=jucmnav" ��http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/UCMVirtualLibrarySearchAll?all=jucmnav�)

�I’m curious to see what you will put here. There are different approaches to evaluate GRL/i* models, qualitative and quantitative. Also, the rules for resolving values, especially for softgoals, can be controversial. I don’t really think there is a standard way to do this yet, so it might not be advisable to put it in the standard. After reading through the paper describing evaluation, I have some issues with the way that softgoals, dependencies, and overall actors are evaluated, although for quantitative evaluation I don’t necessary have good alternative solutions yet. Maybe the quantitative approach to evaluation that you’ve introduced can be introduced as “one way” to evaluate GRL models, and the rules for the resolution of dependencies, softgoals, and overall actor values can be introduced as “example rules” that can be used. It depends on whether you want the standard of GRL model evaluation to reflect and be inclusive of work in i* evaluation (mine but also other's as well) or whether you just want to pick a single way to go about it in order to avoid confusing new users.

�Will be guidelines and examples, no single algorithms will be imposed. We need to cover: a qualitative evaluation, a quantitative evaluation, and perhaps an interactive evaluation.

�To be updated with new Z.150 table once the structure of Z.151 is complete.

�New section!

�May include the XSD schema, other metamodel views, etc.

In appendices, we’ll likely have illustrative examples.

	Contact:

	Daniel Amyot

Industry Canada

Canada

	Tel: +1 613-562-5800 x6947

Fax: +1 613 562-5664

Email: damyot@site.uottawa.ca

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

	

Printed in Switzerland

Geneva, 1998
TSB:\SG17\DELAYED\D15-3.DOC
28/07/2008

