- 2 -

	INTERNATIONAL

 TELECOMMUNICATION
UNION
	STUDY GROUP 17

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2005-2008
	TD 3497 Rev.3

	
	English only

Original: English

	Question(s):
	12/17
	Geneva, 7-18 April 2008

	TEMPORARY DOCUMENT

	Source:
	Rapporteur

	Title:
	New draft Recommendation Z.151: User Requirements Notation (URN)

TSB Note: this document is available in soft copy only

NEW DRAFT RECOMMENDATION Z.151: URN — USER REQUIREMENTS NOTATION

This document contains the draft specification of the User Requirements Notation, the proposed notation for the Recommendation Z.150: User Requirements Notation (URN) – Language requirements and framework. Z.151 combines the Goal-oriented Requirement Language (GRL) for non-functional requirements (URN-NFR) and the Use Case Map (UCM) notation for functional requirements (URN-FR) into a single notation.
This document combines and supersedes previous work on GRL (old draft Z.151) and UCM (old draft Z.152).

At this time, the document is quite incomplete and we still need to integrate much of the previous documents and more recent results. However, the metamodels (abstract syntax and concrete syntax, see http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/DraftZ151Metamodel) are quite stable, and sections 6.1, 6.2, 7.1, and 7.2 are illustrative of what remains to be done in sections 6 and 7.

Several comments and discussions are included in this version, together with several updates to the text and to the metamodel (more in line with draft Z.111, e.g. use of Nat).

Need to: use structure of Z.111, italic for model elements, check numbering and cross-reference scheme.

We plan to restructure this document to introduce the language on a feature-per-feature basis (more intuitive and in line with Z.111), complete it over the next few weeks, and submit it for consent in September.

NEW DRAFT RECOMMENDATION Z.151:
USER REQUIREMENTS NOTATION (URN)

SUMMARY

Scope-objective

This Recommendation defines the User Requirements Notation (URN) intended for the elicitation, analysis, specification, and validation of requirements. URN combines modelling concepts and notations for goals and intentions (mainly for non-functional requirements and quality attributes) and scenarios (mainly for operational requirements, functional requirements, and performance and architectural reasoning).

Coverage
URN has concepts for the specification of goals, non-functional requirements, rationales, behaviour, scenarios, and structuring. This Recommendation focuses on the definition of an abstract syntax, a concrete graphical syntax, and an interchange format for URN. An assessment of conformity of the current URN representation to the language requirements for URN (Recommendation Z.150) is also included.

Applications

URN is applicable within standards bodies and industry. URN helps to describe and communicate requirements, and to develop reasoning about them. The main applications areas include telecommunications systems, services, and business processes, but URN is generally suitable for describing most types of reactive systems and information systems. The range of applications is from business goals and requirements description to high-level system design and architecture.

Status/Stability

This (draft) Recommendation contains the stable definition of URN. URN components for goal modelling and scenario modelling have been used for more than a decade.
The main text is accompanied by the following:

· Annex A

…

· Appendix I

…

· Bibliography

· URN Change Request Form

Associated work

· ITU-T Recommendation Z.100 (2007), Specification and Description Language (SDL).

· ITU-T Recommendation Z.111 (2008), Notations and Guidelines for the Definition of ITU-T Languages.

· ITU-T Recommendation Z.120 (2004), Message Sequence Chart (MSC).

· ITU-T Recommendation Z.150 (2003), User Requirements Notation (URN) - Language requirements and framework
Keywords

Evaluation, functional requirements, goals, graphical notation, non-functional requirements, rationales, scenarios, specification technique.
TABLE OF CONTENTS

91
Scope

91.1
Goal modelling with URN

101.2
Scenario modelling with URN

111.3
Documentation structure

112
References

123
Definitions

124
Abbreviations and acronyms

135
Conventions

135.1
Grammars

135.2
Basic Definitions

135.2.1
Validity

135.3
Presentation style

135.3.1
Division of text

135.3.2
Titled enumeration items

146
URN basic structural features

146.1
URN specification, model elements, links, metadata, and concerns

156.1.1
URNspec

166.1.2
URNmodelElement

176.1.3
URNlink

176.1.4
Metadata

186.1.5
Concern

196.2
URN concrete grammar metaclasses

196.2.1
ConcreteURNspec

206.2.2
Description

207
GRL features

217.1
GRL basic structural features

217.1.1
GRLspec

227.1.2
GRLmodelElement

237.1.3
GRLLinkableElement

237.2
GRL actors

247.2.1
Actor

257.3
GRL intentional elements

257.3.1
IntentionalElement

287.3.2
IntentionalElementType

297.3.3
ImportanceType

297.4
GRL links

297.4.1
ElementLink

307.4.2
Contribution

327.4.3
ContributionType

337.4.4
Dependency

367.4.5
Decomposition

387.4.6
DecompositionType

387.5
GRL strategies

397.5.1
StrategiesGroup

407.5.2
EvaluationStrategy

407.5.3
Evaluation

417.5.4
QualitativeLabel

427.6
GRL concrete grammar metaclasses

437.6.1
ConcreteGRLspec

447.6.2
GRLGraph

447.6.3
ActorRef

467.6.4
GRLNode

477.6.5
IntentionalElementRef

497.6.6
CollapsedActorRef

507.6.7
LinkRef

547.6.8
Label

567.6.9
LinkRefBendpoint

567.6.10
Position

577.6.11
Size

587.6.12
ConcreteStyle

597.6.13
Comment

608
UCM features

618.1
UCM basic structural features

618.1.1
UCMspec

628.1.2
UCMmodelElement

638.2
UCM maps and path nodes

648.2.1
UCMmap

658.2.2
PathNode

678.2.3
NodeConnection

698.2.4
Condition

708.2.5
Responsibility

718.2.6
RespRef

728.2.7
StartPoint

748.2.8
EndPoint

758.2.9
OrFork

768.2.10
OrJoin

768.2.11
AndFork

778.2.12
AndJoin

788.2.13
EmptyPoint

798.2.14
WaitingPlace

818.2.15
Timer

828.2.16
WaitKind

838.2.17
Connect

858.3
UCM stubs and plug-ins

868.3.1
Stub

918.3.2
PluginBinding

938.3.3
InBinding

938.3.4
OutBinding

948.4
UCM components

948.4.1
Component

958.4.2
ComponentType

968.4.3
ComponentKind

968.4.4
ComponentRef

988.4.5
ComponentBinding

988.5
UCM scenario definitions

998.5.1
ScenarioGroup

1008.5.2
ScenarioDef

1008.5.3
Initialization

1018.5.4
Variable

1028.5.5
EnumerationType

1028.5.6
DatatypeKind

1038.6
UCM performance annotations

1038.6.1
Workload

1048.6.2
ArrivalProcess

1048.6.3
GeneralResource

1058.6.4
PassiveResource

1058.6.5
ActiveResource

1068.6.6
ProcessingResource

1068.6.7
DeviceKind

1078.6.8
ExternalOperation

1078.6.9
Demand

1088.7
UCM concrete grammar metaclasses

1088.7.1
DirectionArrow

1098.7.2
ConcreteCondition

1099
Data language

11010
URN interchange format

11011
URN analysis

11011.1
GRL model evaluation

11011.2
UCM scenario path traversal

11212
Compliance statement

11513
Tool compliance

11513.1
Definitions of valid tools

11513.1.1
Compliant URN tool

11513.1.2
Valid URN tool

11513.1.3
Compliant GRL tool

11513.1.4
Valid GRL tool

11513.1.5
Compliant UCM tool

11513.1.6
Valid UCM tool

11513.2
Conformance

116Annex A URN Interchange Format: XML Schema

117Appendix I Summary of the URN Notation

118Appendix II Examples of GRL Propagation Algorithms

119Appendix III Example of UCM Traversal Mechanism

LIST OF FIGURES

13Figure 1/Z.151 Example metaclasses from an abstract grammar (white) and a concrete grammar (grey)

15Figure 2/Z.151 Abstract grammar: URN specification, links, metadata, and model elements

18Figure 3/Z.151 Abstract grammar: URN concerns

19Figure 4/Z.151 Concrete grammar: ConcreteURNspec metaclass

20Figure 5/Z.151 Concrete grammar: Description metaclass

21Figure 6/Z.151 Abstract grammar: GRL specification

22Figure 7/Z.151 Abstract grammar: GRL model elements and linkable elements

24Figure 8/Z.151 Abstract grammar: GRL actors, intentional elements, and links

25Figure 9/Z.151 Example: GRL collapsed actor (left) and actor with boundary (right)

27Figure 10/Z.151 Example: GRL intentional elements

28Figure 11/Z.151 Example: GRL actor that contains a goal and a task

28Figure 12/Z.151 Symbols: GRL intentional element types

32Figure 13/Z.151 Example: GRL contributions and correlations

33Figure 14/Z.151 Symbols: GRL contribution types

35Figure 15/Z.151 Example: GRL dependencies (configuration 1)

35Figure 16/Z.151 Example: GRL dependencies (configuration 2)

35Figure 17/Z.151 Example: GRL dependencies (configuration 3)

35Figure 18/Z.151 Example: GRL dependencies (configuration 4)

36Figure 19/Z.151 Example: GRL dependencies (configuration 5)

36Figure 20/Z.151 Example: GRL dependencies (configuration 6)

37Figure 21/Z.151 Example: GRL XOR decomposition: normal (left) and means-end (right) presentations

39Figure 22/Z.151 Abstract grammar: GRL evaluation strategies

42Figure 23/Z.151 Symbols: GRL qualitative labels

43Figure 24/Z.151 Concrete grammar: GRL concrete syntax metaclasses

45Figure 25/Z.151 Symbol: GRL actor reference

45Figure 26/Z.151 Example: GRL actors with satisfaction values

45Figure 27/Z.151 Layout: Position and size of ActorRef, IntentionalElementRef, and CollapsedActorRef

46Figure 28/Z.151 Symbol: Alternative presentation for actor references

48Figure 29/Z.151 Symbols: GRL intentional element references

48Figure 30/Z.151 Example: GRL intentional elements with importance values

48Figure 31/Z.151 Example: GRL intentional elements with satisfaction values

48Figure 32/Z.151 Example: GRL intentional elements with initial satisfaction values

50Figure 33/Z.151 Symbol: GRL collapsed actor reference

50Figure 34/Z.151 Example: GRL collapsed actor references with satisfaction values

51Figure 35/Z.151 Symbol: GRL contribution

51Figure 36/Z.151 Symbol: GRL correlation

51Figure 37/Z.151 Examples: GRL contribution links with contribution values

51Figure 38/Z.151 Symbol: GRL dependency

52Figure 39/Z.151 Symbol: GRL decompositions

52Figure 40/Z.151 Symbol: GRL means-end

53Figure 41/Z.151 Alternative presentation for GRL dependencies

53Figure 42/Z.151 Alternative presentation for IOR decomposition

54Figure 43/Z.151 Example: GRL link with two bend points shown with straight lines

54Figure 44/Z.151 Example: GRL link with two bend points shown as a curved line

55Figure 45/Z.151 Concrete grammar: Label metaclass

57Figure 46/Z.151 Concrete grammar: Position metaclass

57Figure 47/Z.151 Concrete grammar: Size metaclass

58Figure 48/Z.151 Concrete grammar: ConcreteStyle metaclass

59Figure 49/Z.151 Concrete grammar: Comment metaclass

60Figure 50/Z.151 Symbol: URN comment

61Figure 51/Z.151 Abstract grammar: UCM specification

62Figure 52/Z.151 Abstract grammar: UCM model elements

64Figure 53/Z.151 Abstract grammar: UCM paths and path nodes

66Figure 54/Z.151 Layout: Position, label, and condition for PathNode

85Figure 55/Z.151 Abstract grammar: UCM stubs and plug-ins

94Figure 56/Z.151 Abstract grammar: UCM components

97Figure 57/Z.151 Layout: Position, size, and label for ComponentRef and of ActorRef

99Figure 58/Z.151 Abstract grammar: UCM scenario definitions

103Figure 59/Z.151 Abstract grammar: UCM performance annotations

108Figure 60/Z.151 Concrete grammar: UCM concrete syntax metaclasses

LIST OF TABLES
83Table 1/Z.151
Overview of timer semantics

85Table 2/Z.151
Combinations of node connections with connects

91Table 3/Z.151
Instances and Synchronizing Stubs

112Table 4/Z.151
Requirements for Path Traversal Mechanism

113Table 5/Z.151
URN-NFR compliance table

114Table 6/Z.151
UCM compliance table

ITU-T Draft Recommendation Z.151

User Requirements Notation (URN)
1 Scope

This Recommendation defines the User Requirements Notation (URN) intended for the elicitation, analysis, specification, and validation of requirements. URN allows software and requirements engineers to discover and specify requirements for a proposed system or an evolving system, and analyse such requirements for correctness and completeness.

URN combines modelling concepts and notations for goals and intentions (mainly for non-functional requirements and quality attributes) and scenarios (mainly for operational requirements, functional requirements, and performance and architectural reasoning). In particular, URN has concepts for the specification of goals, non-functional requirements, rationales, behaviour, scenarios, and structuring.

This Recommendation focuses on the definition of an abstract syntax, a concrete graphical syntax, and an interchange format for URN. An assessment of conformity of the current URN representation to the language requirements for URN (Recommendation Z.150) is also included.

URN is applicable within standards bodies and industry. URN helps to describe and communicate requirements, and to develop reasoning about them. The main applications areas include telecommunications systems, services, and business processes, but URN is generally suitable for describing most types of reactive systems and information systems. The range of applications is from business goals and requirements description to high-level design.

URN is a notation that complies with Recommendation Z.150. It includes concepts and notations satisfying the language requirements of Z.150’s URN-NFR (for non-functional requirements) and URN-FR (for functional requirements). URN integrates these concepts and notation into a single language.

1.1 Goal modelling with URN
The subset of the URN language that addresses Z.150 URN-NFR language requirements is named Goal-oriented Requirement Language (GRL), which is a language for supporting goal-oriented modelling and reasoning about requirements, especially non-functional requirements and quality attributes. It provides constructs for expressing various types of concepts that appear during the requirement process. GRL has its roots in two widespread goal-oriented modelling languages: i* and the NFR Framework. Major benefits of GRL over other popular notations include the integration of GRL with a scenario notation and a clear separation of GRL model elements from their graphical representation, enabling a scalable and consistent representation of multiple views/diagrams of the same goal model.
There are three main categories of concepts in GRL: actors, intentional elements, and links. The intentional elements in GRL are goals, softgoals, tasks, resources, and beliefs. They are intentional because they are used for models that allow answering questions such as why particular behaviours, informational and structural aspects were chosen to be included in the system requirements, what alternatives were considered, what criteria were used to deliberate among alternative options, and what the reasons were for choosing one alternative over the other. Actors are holders of intentions; they are the active entities in the system or its environment (e.g., stakeholders or other systems) who want goals to be achieved, tasks to be performed, resources to be available and softgoals to be satisfied. Links are used to connect isolated elements in the requirement model. Different types of links depict different structural and intentional relationships (including decompositions, contributions, and dependencies).
This kind of modelling is different from the detailed specification of “what” is to be done. Here the modeller is primarily concerned with exposing “why” certain choices for behaviour and/or structure were made or constraints introduced. The modeller is not yet interested in the operational details of processes or system requirements, or component interactions. Omitting these kinds of details during early development and standardization phases allows taking a higher level (sometimes called a strategic stance) towards modelling the current or the future standard or software system and its embedding environment. Modelling and answering “why” questions leads us to consider the opportunities stakeholders seek out and/or vulnerabilities they try to avoid within their environment by utilising capabilities of the software system and/or other stakeholders, by trying to rely upon and/or assign capabilities and by introducing constraints on how those capabilities ought to be performed.

GRL supports the analysis of strategies, which help reach the most appropriate trade-offs among (often conflicting) goals of stakeholders. A strategy consists of a set of intentional elements that are given initial satisfaction values. These satisfaction values capture contextual or future situations as well as choices among alternative means of reaching various goals. These values are then propagated to the other intentional elements through their links, enabling a global assessment of the strategy being studied as well as the global satisfaction of the actors involved. A good strategy provides rationale and documentation for decisions leading to requirements, providing better context for standards/system developers and implementers while avoiding unnecessary re-evaluations of worse alternative strategies.
GRL also provides support for reasoning about scenarios by establishing correspondences between intentional GRL elements and non-intentional elements referring to scenario models of URN-FR. Modelling both goals and scenarios is complementary and may aid in identifying further goals and additional scenarios (and scenario steps) important to stakeholders, thus contributing to the completeness and accuracy of requirements.

1.2 Scenario modelling with URN
The subset of the URN language that addresses Z.150 URN-FR language requirements is named Use Case Map (UCM). UCM specifications employ scenario paths to illustrate causal relationships among responsibilities. Furthermore, UCMs provide an integrated view of behaviour and structure by allowing the superimposition of scenario paths on a structure of abstract components. The combination of behaviour and structure enables architectural reasoning after which UCM specifications may be refined into more detailed scenario models such as MSCs and UML sequence diagrams, or into state machines in SDL or UML statechart diagrams and finally into concrete implementations. Validation, verification, performance analysis, interaction detection, and test generation can be performed at all stages. Thus, the UCM notation enables a seamless transition from the informal to the formal by bridging the modeling gap between goal models and natural language requirements (e.g. use cases) and design in an explicit and visual way. The UCM notation allows the user to delay the specification of component states and messages and even, if desired, of concrete components to later, more appropriate, stages of the development process. The goal of the UCM notation is to provide the right degree of formality at the right time in the development process.

UCM specifications identify input sources and output sinks as well as describe the required inputs and outputs of a scenario. UCM specifications also integrate many scenarios or related use cases in a map-like diagram. Scenarios can be structured and integrated incrementally. This enables reasoning about and detection of potential undesirable interactions of scenarios and components. Furthermore, the dynamic (run-time) refinement capabilities of the UCM notation allow for the specification of (run-time) policies and for the specification of loosely coupled systems where functionality is decided at runtime through negotiation between components or compliance to high-level goals. UCM scenarios can be integrated together, yet individual scenarios are tractable through scenario definitions based on a simple data model. UCMs treat scenario paths as first class model entities and therefore build the foundation to more formally facilitate reusability of scenarios and behavioural patterns across a wide range of architectures.
The UCM notation is a specification language intended for modellers as well as non-specialists because of its visual, simple, and intuitive nature but at the same time it aims to provide sufficient rigorousness for developers or tools and contracts.

Most of the characteristics of excellent requirements such as verifiable, complete, consistent, unambiguous, understandable, modifiable, and traceable can be supported by UCMs. Others such as prioritized and annotated are easily incorporated.

1.3 Documentation structure

This Recommendation defines the User Requirements Notation in the following way:
· Sections 2, 3, and 4 describe respectively references to related ITU-T Recommendations and other standards, definitions, and acronyms used in this Recommendation.

· Section 5 describes conventions used in this Recommendation, with a particular emphasis on metamodelling.

· Section 6 specifies the abstract syntax of basic structural features of the URN language.
· Section 7 specifies the abstract syntax, concrete syntax, and semantics of GRL features.
· Section 8 specifies the abstract syntax, concrete syntax, and semantics of UCM features.
· Section 9 specifies the data language used to formalize conditions and expressions.

· Section 10 specifies an XML-based interchange format for URN models based on the concrete syntax metamodel.
· Section 11 describes basic URN analysis techniques, namely GRL model evaluation and UCM scenario path traversal.
· Section 12 presents how Rec. Z.151 complies with Rec. Z.150.

· Section 13 defines levels of compliances for tools.

2 References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.
· [ITU-T Z.104] ITU-T Recommendation Z.104 (2008), Specification and Description Language (SDL): Data and action language in SDL-2008.

· [ITU-T Z.111] ITU-T Recommendation Z.111 (2008), Notations and Guidelines for the Definition of ITU-T Languages.

· [ITU-T Z.150] ITU-T Recommendation Z.150 (2003), User Requirements Notation (URN) - Language requirements and framework.
· [OMG XSD1] XML Schema Part 1: Structures Second Edition (28 October 2004)

· [OMG XSD2] XML Schema Part 2: Datatypes Second Edition (28 October 2004).
3
Definitions

This Recommendation uses the terms defined in the Definitions section in Z.150 (clause 3).

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations:

ASN.1

Abstract Syntax Notation One

COTS
Commercial-Off-The-Shelf

FR
Functional Requirements

GRL
Goal-oriented Requirement Language

ISO

International Organisation for Standardization

ITU

International Telecommunications Union

MOF

Meta Object Facility

MSC
Message Sequence Chart

NFR
Non-Functional Requirements

OMG

Object Management Group

RE

Requirements Engineering

SDL
Specification and Description Language

TTCN

Tree and Tabular Combined Notation

UCM
Use Case Map

UML
Unified Modelling Language

URN
User Requirements Notation

URN-FR
User Requirements Notation — Functional Requirements

URN-NFR
User Requirements Notation — Non-Functional Requirements

W3C

World Wide Web Consortium

XML
eXtensible Markup Language

5 Conventions

The text of this clause is not normative. Instead, it defines the conventions used for describing the User Requirements Notation.

The conventions of Rec. Z.111 apply to this Recommendation.

5.1 Grammars

The conventions of Rec. Z.111 apply to this Recommendation.

5.2 Basic Definitions

5.2.1 Validity

A specification is a valid User Requirement Notation specification only if it satisfies the syntactic rules and the static conditions defined in this Recommendation.

5.3 Presentation style

The conventions of Rec. Z.111 apply to this Recommendation.

5.3.1 Division of text

The conventions of Rec. Z.111 apply to this Recommendation.

5.3.2 Titled enumeration items

a)
Abstract grammar

The abstract grammar is specified in the form defined in Rec. Z.111. The metamodel presentation of abstract syntax in Rec. Z.111 5.4.1.2 is used. For each metaclass in the metamodel, attributes, relationships to other metaclasses, and constraints (static conditions expressed in natural language) are specified.
b)
Concrete grammar

The URN concrete grammar is presented as an extension to the abstract grammar metamodel combined with a description of the graphical symbols used. The concrete grammar includes all the metaclasses (with attributes, relationships, and constraints) of the abstract grammar. The additional concepts (shown as grey metaclasses) that extend the abstract grammar metamodel are useful to support a graphical language but they have no semantic implication. Common additional concepts include layout information, line styles, and informal descriptions. For example, in Figure 1/Z.151, a color attribute is added to an element of the abstract grammar. Composition with multiplicity 0..1 is used here to ensure that specifications without this layout information are still valid and that the additional concept will not interfere during analysis.

[image: image1.emf]AbstractGrammarElement

attribute1 : String

attribute2 : Nat

LayoutInformation

color : String

0..110..1

layout

1

elem

Figure 1/Z.151 Example metaclasses from an abstract grammar (white) and a concrete grammar (grey)
Not all URN metaclasses, attributes, or relationships have a concrete graphical notation. It is then up to tools to provide ways of creating, accessing, and modifying instances of these metaclasses (for instance, through a “property” window).

Many elements with a graphical representation also have model-specific coordinates and sizes. The following convention is used for layout coordinates information.

· Horizontal coordinate (X axis): an integer value representing the number of point units from the origin (0). Positive values are at the right of the origin and negative values at the left of the origin.

· Vertical coordinate (Y axis): an integer value representing the number of point units from the origin (0). Positive values are below the origin and negative values above the origin.
c)
Semantics

The semantics of the abstract grammar metaclass is expressed in natural language. The semantics of a concrete grammar metaclass is that of its abstract grammar metamodel elements (the additional grey metaclasses have no semantics).
d)
Model

Little shorthand or extra notation for URN is included, so this titled enumeration item is often absent.

e)
Example
Where necessary, examples of use are included. These examples are only informative, not normative.
6 URN basic structural features

The URN basic structural features describe containers for URN, GRL, and UCM specifications, as well as definitions of URN model elements, their links and metadata, and concerns. The abstract syntax metaclasses are first presented in section 6.1. Their concrete grammar references concrete syntax metaclasses regrouped in section 6.2.
· Section 6.1: URN specification, model elements, links, metadata, and concerns
· Section 6.2: URN concrete grammar metaclasses
6.1 URN specification, model elements, links, metadata, and concerns
The top-most metaclass, URNspec (see Figure 2/Z.151), contains directly or indirectly all the other elements of a URN model, including concerns (see Figure 3/Z.151). In this Recommendation, the terms “URN model” and “URN specification” are used interchangeably.

[image: image2.emf]toLinks

GRLmodelElementUCMmodelElement

URNmodelElement

id : String

name : String

Metadata

name : String

value : String

0..1

0..*

elem

0..1

metadata

0..*

Concern

URNlink

type : String

1

0..*

fromElem

1

fromLinks

0..*0..*

1

0..*

toElem

1

UCMspec

URNspec

name : String

0..*

0..1

metadata

0..*

urnspec

0..1

1

0..*

urnspec

1

concerns

0..*

1

0..*

urnspec

1

urnLinks

0..*

1

0..1

urnspec

1

ucmspec0..1

GRLspec

1

0..1

urnspec

1

grlspec

0..1

Figure 2/Z.151 Abstract grammar: URN specification, links, metadata, and model elements
6.1.1 URNspec

URNspec is the root element of a URN model/specification. It names the specification and serves as a container for all the other specification elements. See Figure 2/Z.151.
a)
Abstract grammar

Attributes

· name (String): The name of the URN specification.
Relationships

· Composition of GRLspec (0..1): A URNspec may contain one GRL specification (see section 7.1.1).

· Composition of UCMspec (0..1): A URNspec may contain one UCM specification (see section 8.1.1).

· Composition of URNlink (0..*): A URNspec may contain URN links.

· Composition of Metadata (0..*): A URNspec may contain metadata information.

· Composition of Concern (0..*): A URNspec may contain concerns.

Constraints

a. There exists only one instance of URNspec in a URN specification.

b)
Concrete grammar
URNspec has no concrete syntax. However, it may contain additional information in an instance of ConcreteURNspec, as shown in Figure 4/Z.151.
Relationships

· Composition of ConcreteURNspec (0..1): A URNspec may contain one concrete URN specification.

c)
Semantics

None (URNspec is a structural concept only).
6.1.2 URNmodelElement

URN model elements have names and unique identifiers. They can also be linked to each other. See Figure 2/Z.151.
a)
Abstract grammar

Attributes

· id (String): The identifier of the URN model element.

· name (String): The name of the URN model element.

Relationships

· Composition of Metadata (0..*): A URNmodelElement may contain metadata information.

· Association with URNlink (fromLinks, 0..*): A URNmodelElement may be the source of many URN links.
· Association with URNlink (toLinks, 0..*): A URNmodelElement may be the target of many URN links.

· Association with Concern (0..1): A URNmodelElement may belong to one concern.

· URNmodelElement is a superclass of URNlink, Concern, GRLmodelElement (see section 7.1.2), and UCMmodelElement (see section 8.1.2).
Constraints

a. id must be unique within the URN specification.
b. All instances of URNmodelElement must appear in one of its subclasses (that is, metaclass URNmodelElement is abstract).

b)
Concrete grammar

The concrete syntax for URNmodelElement is defined in its subclasses. In addition, a URNmodelElement instance may contain an informal description in an instance of Description, as shown in Figure 5/Z.151.

Relationships

· Composition of Description (0..1): A URNmodelElement may contain one description.

c)
Semantics

A URNmodelElement is a uniquely identifiable model element that can contain metadata and be linked to other model elements. Its subclasses may have additional attributes and relationships.
6.1.3 URNlink

A URN link is a URN model element that connects a source URN model element to a target URN model element. URN links have a user-defined type. See Figure 2/Z.151.
a)
Abstract grammar

Attributes

· Inherits attributes from URNmodelElement.
· type (String): The user-defined type of the URN link.
Relationships

· Inherits relationships from URNmodelElement.
· Contained by URNspec (1): URNlink instances are contained in the URN specification.

· Association with URNmodelElement (fromElem, 1): A URNlink has one source URN model element.

· Association with URNmodelElement (toElem, 1): A URNlink has one target URN model element.
Constraints

a. Inherits constraints from URNmodelElement.
b)
Concrete grammar

The presence of a link on a source or target model element is indicated with a triangle symbol (►) next to the name of the element, if that element’s name is displayed in the concrete syntax.

Relationships

· Inherits relationships from URNmodelElement.
c)
Semantics

URNlink instances provide modellers with a way to create new relationships of various types between any pair of model elements in a URN specification. These links can be used for traceability, refinement, composition, and other purposes, hence providing an extensible semantics to URN.
6.1.4 Metadata

Metadata is a name-value pair that can be used to attach information to a URN specification or its model elements. See Figure 2/Z.151.
a)
Abstract grammar

Attributes

· name (String): The name of the URN metadata information instance.

· value (String): The value of the URN metadata information instance.

Relationships

· Contained by URNspec (0..1) [not navigable]: Metadata instances may be contained in one URN specification.

· Contained by URNmodelElement (0..1) [not navigable]: Metadata instances may be contained in one URN model element.

Constraints

a. Each Metadata instance is contained in exactly one instance of type URNspec or URNmodelElement.

b)
Concrete grammar
None.

c)
Semantics

Metadata instances provide modellers with a way to attach user-defined named values to most elements found in a URN specification, hence providing an extensible semantics to URN.
6.1.5 Concern
A Concern is a guarded grouping of URN model elements. Concerns are typically used to group related GRL and UCM diagrams into one unit of understanding. See Figure 2/Z.151 and Figure 3/Z.151.
[image: image3.emf]URNmodelElement

id : String

name : String

Concern

0..1

0..*

concern

0..1

elements

0..*

Condition

expression : String

0..10..1

concern

0..1

condition

0..1

Figure 3/Z.151 Abstract grammar: URN concerns

a)
Abstract grammar

Attributes

· Inherits attributes from URNmodelElement.
Relationships

· Inherits relationships from URNmodelElement.
· Contained by URNspec (1): Concern instances are contained in the URN specification.

· Composition of Condition (0..1): A Concern may contain one condition (see section 8.2.4)
· Association with URNmodelElement (0..*): A Concern may group many URN model elements.
Constraints

a. Inherits constraints from URNmodelElement.
b)
Concrete grammar

Relationships

· Inherits relationships from URNmodelElement.
c)
Semantics

A Concern groups URN model elements together. This grouping can be guarded for composition purposes with a Condition.
6.2 URN concrete grammar metaclasses
The following concrete grammar metaclasses may be contained by some of the abstract grammar metaclasses. They have no semantics.
6.2.1 ConcreteURNspec

The ConcreteURNspec metaclass contains standard meta-information about the URN model itself. See Figure 4/Z.151
[image: image4.emf]URNspec

ConcreteURNspec

description : String

author : String

created : String

modified : String

specVersion : String

urnVersion : String

1

0..1

urnspec

1

info

0..1

Figure 4/Z.151 Concrete grammar: ConcreteURNspec metaclass
a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

There is no visual representation of this metaclass.

Attributes

· description (String): An informal description of the URN specification.

· author (String): The author of the URN specification.

· created (String): The date and time of creation of the URN specification. The suggested format is (in English) “Month day, year hours:minutes:seconds AmOrPm timezone”. For instance: “November 15, 2007 9:21:06 AM EST”.

· modified (String): The date and time of the last modification to this URN specification. The suggested format is (in English) “Month day, year hours:minutes:seconds AmOrPm timezone”. For instance: “November 15, 2007 9:21:06 AM EST”.

· specVersion (String): The version number of the URN specification. It is suggested to use an integer that starts at 1 when the specification is first created and that is incremented by one each time the specification is modified.

· urnVersion (String): The version number of the URN standard used. For instance: “Z.151 (11/08)”.

Relationships

· Contained by URNspec (1): A ConcreteURNspec is contained in the URN specification.

Constraints

a. The date modified is later than the date created.

6.2.2 Description

An informal Description can be attached to any URN model element. See Figure 5/Z.151.
[image: image5.emf]Description

description : String

URNmodelElement

0..1

1

desc

0..1

elem

1

Figure 5/Z.151 Concrete grammar: Description metaclass
a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

There is no visual representation of this metaclass.

Attributes

· description (String): An informal description of the URN model element.

Relationships

· Contained by URNmodelElement (1): A Description is contained in a URN model element.

Constraints

None.
7 GRL features
The Goal-oriented Requirement Language provides a set of URN features that enable the description and analysis of goals/intentions of systems and stakeholders. The GRL features are grouped under six categories:
· Section 7.1: GRL basic structural features
· Section 7.2: GRL actors

· Section 7.3: GRL intentional elements
· Section 7.4: GRL links
· Section 7.5: GRL strategies
· Section 7.6: GRL concrete grammar metaclasses
Note that many of the concrete grammar metaclasses defined here are also used by UCM features.
7.1 GRL basic structural features
The GRL basic structural features describe containers for GRL specifications, as well as definitions of GRL model elements, including linkable elements. The abstract grammar metaclasses are presented in this section, whereas their concrete grammar metaclasses are detailed in section 7.6.

7.1.1 GRLspec

GRLspec serves as a container for the GRL specification elements. See Figure 6/Z.151.
[image: image6.emf]IntentionalElement

Actor ElementLink

StrategiesGroupEvaluationStrategy

GRLspec

0..*

1

intElements

0..*

grlspec

1

0..*

1

actors

0..*

grlspec

1

0..*

1

links

0..*

grlspec

1

1

0..*

grlspec

1

groups

0..*

0..*

1

strategies

0..*

grlspec

1

Figure 6/Z.151 Abstract grammar: GRL specification
a)
Abstract grammar

Attributes

None.

Relationships

· Contained by URNspec (1): The GRLspec instance is contained in the URN specification (see Figure 2/Z.151).

· Composition of Actor (0..*): A GRLspec may contain actors.

· Composition of IntentionalElement (0..*): A GRLspec may contain intentional elements.

· Composition of ElementLink (0..*): A GRLspec may contain element links.
· Composition of StrategiesGroup (0..*): A GRLspec may contain strategy groups.

· Composition of EvaluationStrategy (0..*): A GRLspec may contain many evaluation strategies.

Constraints

None.

b)
Concrete grammar

GRLspec has no concrete syntax. However, it may contain concrete GRL specification information and GRL graphs, as shown in Figure 24/Z.151.
Relationships

· Composition of ConcreteGRLspec (0..1): A GRLspec may contain one concrete GRL specification.

· Composition of GRLGraph (0..*): A GRLspec may contain many GRL graphs.

c)
Semantics

None (GRLspec is a structural concept only).

7.1.2 GRLmodelElement

a)
Abstract grammar

A GRLmodelElement is a URN model element specialized for GRL concepts. See Figure 7/Z.151.

[image: image7.emf]GRLmodelElement

StrategiesGroup

EvaluationStrategy

IntentionalElement

Actor

GRLLinkableElement

ElementLink

0..*

1

linksDest

0..*

dest

1

0..*

1

linksSrc

0..*

src

1

Figure 7/Z.151 Abstract grammar: GRL model elements and linkable elements

Attributes

· Inherits attributes from URNmodelElement.
Relationships

· Inherits relationships from URNmodelElement.

· GRLmodelElement is a superclass of GRLLinkableElement, ElementLink, StrategiesGroup, and EvaluationStrategy.

Constraints

a. Inherits constraints from URNmodelElement.
b. All instances of GRLmodelElement must appear in one of its subclasses (that is, metaclass GRLmodelElement is abstract).

b)
Concrete grammar

The concrete syntax for GRLmodelElement is defined in its subclasses.

Relationships

· Inherits relationships from URNmodelElement.
· GRLmodelElement is a superclass of GRLGraph, ActorRef, GRLNode, and LinkRef.
c)
Semantics

A GRLmodelElement is a uniquely identifiable GRL model element that can contain metadata and be linked to other model elements. Its subclasses may have additional attributes and relationships.

7.1.3 GRLLinkableElement

A GRLLinkableElement is a GRL model element that can be linked to other GRL linkable elements through an ElementLink. GRLLinkableElement abstracts the commonalities of actors and intentional elements. See Figure 7/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from GRLmodelElement.
Relationships

· Inherits relationships from GRLmodelElement.

· Association with ElementLink (linksSrc, 0..*): A GRLLinkableElement may be the source of many GRL element links.

· Association with ElementLink (linksDest, 0..*): A GRLLinkableElement may be the destination of many GRL element links.
· GRLLinkableElement is a superclass of IntentionalElement and Actor.

Constraints

a. Inherits constraints from GRLmodelElement.
b. All instances of GRLLinkableElement must appear in one of its subclasses (that is, metaclass GRLLinkableElement is abstract).

b)
Concrete grammar

Relationships

· Inherits relationships from GRLmodelElement.
c)
Semantics

A GRLLinkableElement is a GRL model element that can be linked to other actors and intentional elements.

7.2 GRL actors

Figure 8/Z.151 shows the metaclasses for GRL actors, intentional elements, and their links. It is referenced by this section as well as by sections 7.3 and 7.4.
[image: image8.emf]Contribution

contribution : ContributionType = Unknown

quantitativeContribution : Integer = 0

correlation : Boolean = false

ContributionType

Make

Help

SomePositive

Unknown

SomeNegative

Hurt

Break

<<enumeration>>

Decomposition

DecompositionType

AND

XOR

IOR

<<enumeration>>

Dependency

ImportanceType

High

Medium

Low

None

<<enumeration>>

IntentionalElementType

Softgoal

Goal

Task

Resource

Belief

<<enumeration>>

GRLLinkableElementElementLink

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

importance : ImportanceType = None

importanceQuantitative : Integer = 0

Actor

0..*1

linksDest

0..*

dest

1

0..*

1

linksSrc

0..*

src

1

0..*

0..1

elems

0..*

actor

0..1

Figure 8/Z.151 Abstract grammar: GRL actors, intentional elements, and links
7.2.1 Actor

An Actor is a GRL linkable element that represents an entity that has intentions and carries out actions to achieve its goals by exercising its know-how. Actors are often used to represent stakeholders as well as systems. Actors may contain intentional elements. See Figure 8/Z.151.
One could start modelling the domain using only actors without intentional elements inside just to show the relationship among actors. One can also add intentional elements to specify how actors depend on each other to achieve their goals.

a)
Abstract grammar

Attributes

· Inherits attributes from GRLLinkableElement.
Relationships

· Inherits relationships from GRLLinkableElement.

· Contained by GRLspec (1): Actor instances are contained in the GRL specification (see Figure 6/Z.151).

· Association with IntentionalElement (0..*): An Actor may contain many intentional elements.

Constraints

a. Any two Actors cannot share the same name inside a URN specification.
b. The name of an Actor instance cannot be an empty String.
b)
Concrete grammar

An actor definition does not have a visual representation, but actor references (ActorRef) and collapsed actor references (CollapsedActorRef) in GRL diagrams do have a graphical representation. The color of an actor’s circle line and the fill color are defined in the actor definition’s concrete style (ConcreteStyle) and are hence shared by all the actor’s references. See Figure 24/Z.151.
Relationships

· Inherits relationships from GRLLinkableElement.

· Composition of ConcreteStyle (0..1): An Actor definition may contain one concrete style.

· Association with ActorRef (0..*): An Actor definition may be referenced by many actor references.

· Association with CollapsedActorRef (0..*): An Actor definition may be referenced by many collapsed actor references.

c)
Semantics

An Actor is a GRL linkable element that may contain intentional elements describing its intentions and capabilities. An actor may also depend on another actor to satisfy some intentional element. How well an actor is satisfied depends on the satisfaction level and importance of the intentional elements it contains.
d)
Model

None.

e)
Examples
Figure 9/Z.151 is a GRL diagram that shows a “Telecom Provider” as a collapsed actor (left) and as an actor with boundary (right). See sections 7.6.3 and 7.6.6 for the details of the concrete syntax.
[image: image9.emf]Telecom

Provider

Telecom

Provider

Figure 9/Z.151 Example: GRL collapsed actor (left) and actor with boundary (right)
7.3 GRL intentional elements

7.3.1 IntentionalElement

An IntentionalElement is a GRL linkable element used for models that allow answering questions such as why particular behaviours, informational and structural aspects were chosen to be included in the system requirement, what alternatives were considered, what criteria were used to deliberate among alternative options, and what the reasons were for choosing one alternative over the other. Intentional elements may be included in actors and they can be linked to each other in different ways. There are different types of intentional elements specified. Intentional elements can be decomposed and they can be given a quantitative or qualitative importance level when included in an actor. See Figure 8/Z.151.
a)
Abstract grammar

Attributes

· Inherits attributes from GRLLinkableElement.

· type (IntentionalElementType): The type of intentional element.

· decompositionType (DecompositionType): The type of decomposition when this intentional element is the source of decomposition link, if any. Default value is AND.

· importance (ImportanceType): Qualitative importance of the intentional element to its containing actor, if any. Default value is None.

· importanceQuantitative (Integer): Quantitative importance of the intentional element to its containing actor, if any. Default value is 0.

Relationships

· Inherits relationships from GRLLinkableElement.

· Contained by GRLspec (1): IntentionalElement instances are contained in the GRL specification.

· Association with Actor (0..1): An IntentionalElement may be contained in one actor.
· Association with Evaluation (0..*) [not navigable]: An IntentionalElement may be given many evaluation values.
· Uses IntentionalElementType enumeration.
· Uses DecompositionType enumeration.
· Uses ImportanceType enumeration.
Constraints

a. Inherits constraints from GRLLinkableElement.
b. The name of an IntentionalElement instance cannot be an empty String.
c. importanceQuantitative (0 and importanceQuantitative (100.

d. If an IntentionalElement is associated with an Actor, then there is only one IntentionalElement with this name associated to the Actor.

e. If an IntentionalElement is not associated with any Actor, then there is only one IntentionalElement with this name that is not associated with any Actor.

b)
Concrete grammar

An intentional element does not have a visual representation, but intentional element references (IntentionalElementRef) in GRL diagrams do have a graphical representation. The line and fill colors of an intentional element are specified in its definition’s concrete style (ConcreteStyle) and are hence shared by all the intentional element’s references. See Figure 24/Z.151.

Relationships

· Inherits relationships from GRLLinkableElement.

· Composition of ConcreteStyle (0..1): An IntentionalElement definition may contain one concrete style.

· Association with IntentionalElementRef (0..*): An IntentionalElement definition may be referenced by many intentional element references.

c)
Semantics

An IntentionalElement describes an intention or a capability. An intentional element contained in an actor is held by this actor and therefore describes part of its intentions or capabilities. A value of 0 for importanceQuantitative means that the intentional element is not important to the actor, whereas a value of 100 means that it is highly important.

The two importance attributes are only taken into consideration during actor satisfaction analysis, when the intentional element is included by an actor. Only the relevant importance attribute is considered depending on the type of analysis (qualitative or quantitative).

It is not required for importance and importanceQuantitative to be consistent as modellers may want to use only one type of analysis (qualitative or quantitative). However, it is recommended to keep them consistent if the modellers intend to switch between different types of analysis.
d)
Model

None.

e)
Examples
Figure 10/Z.151is a GRL diagram that shows five intentional elements, one for each type:
[image: image10.emf]Voice

Connection

Be Setup

Voice

Connection

Be Setup

High

Reliability

High

Reliability

Wireless is

less reliable than

Internet

Wireless is

less reliable than

Internet

Make Voice

Connection

Over Wireless

Make Voice

Connection

Over Wireless

Internet

Connection

Internet

Connection

Figure 10/Z.151 Example: GRL intentional elements
· “Voice Connection Be Setup” is defined as a (hard) goal because this is something than can be achieved entirely.
· “High Reliability” is defined as a softgoal because this is something that can never be entirely achieved (but that can be sufficiently achieved).
· “Make Voice Connection Over Wireless” is defined as a task because this is a particular way of setting up a connection.
· “Internet Connection” is defined as a resource because this is a physical entity that can be available or not.
· “Wireless is less reliable than Internet” is defined as a belief because this provides a rationale for some of the design decisions.

See sections 7.3.2, 7.3.3, and 7.6.5 for the details of the concrete syntax.

The GRL diagram in Figure 11/Z.151 shows a goal and a task contained by a “Telecom Provider” actor. The goal has an importanceQualitative value of Medium whereas the task has an importanceQualitative value of None (hence it is not shown):

[image: image11.emf]Make Voice

Connection

Over Wireless

Make Voice

Connection

Over Wireless

Telecom

Provider

Voice

Connection

Be Setup (50)

Voice

Connection

Be Setup (50)

Make Voice

Connection

Over Wireless

Make Voice

Connection

Over Wireless

Figure 11/Z.151 Example: GRL actor that contains a goal and a task
7.3.2 IntentionalElementType

An intentional element can be a Goal, Softgoal, Task, Resource, or Belief. See Figure 8/Z.151.
a)
Abstract grammar

Attributes

· None (enumeration metaclass).

Relationships

· Used by IntentionalElement.

Constraints

None.

b)
Concrete grammar

The symbols in Figure 12/Z.151 are used to denote the various types of GRL intentional elements. See usage in IntentionalElementRef, section 7.6.5.
[image: image12.emf]Goal Softgoal BeliefResourceTask

Figure 12/Z.151 Symbols: GRL intentional element types
c)
Semantics

· A (hard) Goal is a condition or state of affairs in the world that the stakeholders would like to achieve. How the goal is to be achieved is not specified, allowing alternatives to be considered. A goal can be either a business goal or a system goal. A business goal expresses goals regarding the business or state of the business affairs the individual or organisation wishes to achieve. A system goal expresses goals the target system should achieve and generally describes the functional requirements of the target information system.

· A Softgoal is a condition or state of affairs in the world that the actor would like to achieve, but unlike in the concept of (hard) goal, there are no clear-cut criteria for whether the condition is achieved, and it is up to subjective judgement and interpretation of the developer to judge whether a particular state of affairs in fact achieves sufficiently the stated softgoal. Softgoals are often used to describe qualities and non-functional aspects such as security, robustness, performance, usability, etc.

· A Task specifies a particular way of doing something. When a task is part of the decomposition of a (higher-level) task, this restricts the higher-level task to that particular course of action. Tasks can also be seen as the solutions in the target system, which will address (or operationalize) goals and softgoals. These solutions provide operations, processes, data representations, structuring, constraints and agents in the target system to meet the needs stated in the goals and softgoals.

· A Resource is a physical or informational entity, with which the main concern is whether it is available.

· A Belief is used to represent design rationale. Beliefs make it possible for domain characteristics to be considered and properly reflected in the decision making process, hence facilitating later review, justification and change of the system, as well as enhancing traceability.
7.3.3 ImportanceType

The qualitative importance of an intentional element to its actor can be High, Medium, Low or None. See Figure 8/Z.151.
a)
Abstract grammar

Attributes

· None (enumeration metaclass).

Relationships

· Used by IntentionalElement.

Constraints

None.

b)
Concrete grammar

None (enumeration metaclass). However, it influences the presentation of intentional elements contained by actors (see section 7.6.5)
c)
Semantics

High is used for specifying the highest importance, Low for some non-null importance, Medium for a level in between high and low, and finally None for no importance. The satisfaction level of an intentional element with a None importance will have no impact on the qualitative evaluation of the global satisfaction of the associated actor.

7.4 GRL links

7.4.1 ElementLink

An ElementLink connects two GRL linkable elements and represents the intentional relationship existing between them. ElementLink abstracts the commonalities of decomposition, contribution, and dependency links. See Figure 8/Z.151.
a)
Abstract grammar

Attributes

· Inherits attributes from GRLmodelElement.
Relationships

· Inherits relationships from GRLmodelElement.

· Contained by GRLspec (1): ElementLink instances are contained in the GRL specification.

· Association with GRLLinkableElement (src, 1): An ElementLink has exactly one source GRL linkable element.

· Association with GRLLinkableElement (dest, 1): An ElementLink has exactly one destination GRL linkable element.

· ElementLink is a superclass of Contribution, Dependency, and Decomposition.
Constraints

a. Inherits constraints from GRLmodelElement.
b. All instances of ElementLink must appear in one of its subclasses (that is, metaclass ElementLink is abstract).

c. The source and destination GRL linkable elements must be different.

b)
Concrete grammar

Relationships

· Inherits relationships from GRLmodelElement.

· Association with LinkRef (0..*): An ElementLink may have many link references.
c)
Semantics

An ElementLink is a directed link that connects a source actor or intentional element to a different destination actor or intentional element. The semantics of the link is provided by the subclass used.

7.4.2 Contribution

A Contribution link describes how a source intentional element contributes to the satisfaction of a destination intentional element. A contribution is an effect that is a primary desire during modelling, whereas a correlation expresses knowledge about interactions between intentional elements in different categories. A correlation link is the same as a contribution link except that the correlation is not an explicit desire, but is a side effect. See Figure 8/Z.151.
a)
Abstract grammar

Attributes

· Inherits attributes from ElementLink.
· contribution (ContributionType): The qualitative level of contribution. Default value is Unknown.

· quantitativeContribution (Integer): The quantitative level of contribution. Default value is 0.

· correlation (Boolean): Indicates whether the link is a regular contribution (false) or a correlation (true). Default value is false.

Relationships

· Inherits relationships from ElementLink.

· Uses ContributionType enumeration.
Constraints

a. Inherits constraints from ElementLink.

b. Actors can neither be the source nor the destination of a decomposition.

c. The destination intentional element (dest) must not be a resource or a belief.

d. quantitativeContribution (-100 and quantitativeContribution (100.

b)
Concrete grammar

A Contribution does not have a visual representation, but link references (LinkRef) in GRL diagrams do provide a graphical representation.

Relationships

· Inherits relationships from ElementLink.

c)
Semantics

A Contribution defines the level of impact that the satisfaction of a source intentional element has on the satisfaction of a destination intentional element. The impact can be qualitative (positive or negative, sufficient or insufficient; see the contributions in section 7.4.3) and then contribution will be used in goal model evaluations. The impact can be also be quantitative (value in [-100, 100]) and then quantitativeContribution will be used in goal model evaluations. A correlation link (correlation is true) has the same impact on an evaluation as regular contribution links, but it emphasizes side-effects between intentional elements in different categories or actors.

Only the relevant contribution attribute is considered depending on the type of analysis (qualitative or quantitative). It is not required for contribution and quantitativeContribution to be consistent as modellers may want to use only one type of analysis (qualitative or quantitative). However, it is recommended to keep them consistent if the modellers intend to switch between different types of analysis.

Semantic variations

The following clause is non-normative.

Modellers may impose additional stylistic constraints on the well-formedness of contributions. For instance, since softgoals are the only intentional elements that can never really be fully satisfied:

a. The destination intentional element must be a softgoal.
d)
Model

None.

e)
Examples
Figure 13/Z.151 is a GRL diagram that shows three contributions and two correlations linking five intentional elements.
[image: image13.emf]High

Reliability

High

Reliability

Make Voice

Connection

Over Wireless

Make Voice

Connection

Over Wireless

Make Voice

Connection

Over Internet

Make Voice

Connection

Over Internet

Minimize

Spectrum Usage

Minimize

Spectrum Usage

Wireless is

less reliable than

Internet

Wireless is

less reliable than

Internet

Figure 13/Z.151 Example: GRL contributions and correlations
· “Make Voice Connection Over Wireless” has a positive and sufficient contribution on “High Reliability”.
· “Make Voice Connection Over Internet” has some positive contribution on “High Reliability”.

· “Wireless is less reliable than Internet” has some negative contribution on “High Reliability”.

· “Make Voice Connection Over Wireless” has some negative correlation (side-effect) on “Minimize Spectrum Usage”.

· “Make Voice Connection Over Internet” has some negative correlation (side-effect) on “Minimize Spectrum Usage”.
See sections 7.4.3 and 7.6.7 for the details of the concrete syntax.
7.4.3 ContributionType

A qualitative contribution level in a Contribution link can take one of the following values: Make, Help, SomePositive, Unknown, SomeNegative, Hurt, Break. See Figure 8/Z.151.
a)
Abstract grammar

Attributes

· None (enumeration metaclass).

Relationships

· Used by Contribution.

Constraints

None.

b)
Concrete grammar
Figure 14/Z.151 lists the icons used to annotate GRL contribution links (including correlation links) according to the value of their (qualitative) contribution. See usage in LinkRef, section 7.6.7.

[image: image14.emf]BreakBreakHurtHurtSomeNegativeSomeNegativeMakeMakeHelpHelpSomePositiveSomePositive UnknownUnknown

Figure 14/Z.151 Symbols: GRL contribution types
c)
Semantics

The qualitative contribution of a source intentional element to a destination intentional element can be one of the following values based on the degree (positive or negative) and sufficiency of the contribution to the satisfaction of the destination intentional element:

· Make: The contribution is positive and sufficient.

· Help: The contribution is positive but not sufficient.

· SomePositive: The contribution is positive, but the extent of the contribution is unknown.

· Unknown: There is some contribution, but the extent and the degree (positive or negative) of the contribution is unknown.

· SomeNegative: The contribution is negative, but the extent of the contribution is unknown.

· Hurt: The contribution is negative but not sufficient.

· Break: The contribution of the contributing element is negative and sufficient.
d)
Model

An alternative presentation of the Unknown contribution is to simply omit the Unknown icon on the contribution link. This makes GRL diagrams less cluttered, without loss of information.
7.4.4 Dependency

A Dependency describes how a source actor (the depender) depends on a destination actor (the dependee) for an intentional element (the dependum). Often, the modeller will use two consecutive dependency links (from depender to dependum, and from dependum to dependee) to express detailed dependencies, but dependencies can be used in more generic situations as well. See Figure 8/Z.151.

The dependum specifies what the dependency is about, i.e., the intentional element around which a dependency relationship centers. With an intentional element as a source of the dependency, the depender may specify why it depends on the depender for the dependum. With an intentional element as a target of the dependency, the dependee may specify how it is required to provide or satisfy the dependum.
a)
Abstract grammar

Attributes

· Inherits attributes from ElementLink.
Relationships

· Inherits relationships from ElementLink.

Constraints

a. Inherits constraints from ElementLink.

b. Belief intentional elements can neither be the source nor the destination of a dependency.

c. At least one of the GRL linkable elements linked by the dependency must be an actor or an intentional element contained in an actor.

d. If the source and destination linked by the dependency are intentional elements, then these intentional elements must not be contained in the same actor.

b)
Concrete grammar

A Dependency does not have a visual representation, but link references (LinkRef) in GRL diagrams do provide a graphical representation for dependencies.

Relationships

· Inherits relationships from ElementLink.

c)
Semantics

Dependencies enable reasoning about how actors depend on each other to achieve their goals. The satisfaction level of the depender may be limited by the ability of the dependee to provide the dependum to the depender.
Dependency links can be used in a number of configurations including but not limited to the ones described below. According to the required level of detail, intentional elements inside actors can be used as source and/or destination of a dependency link. Assume Depender and Dependee are different instances of Actor, D1 and D2 are different instances of Dependency, and Why, How, and What are different instances of IntentionalElement. Why is inside Depender, How is inside Dependee, and What is not inside any actor. A named arrow ((D() indicates the presence of a dependency link D between the source and target GRL linkable elements involved.

1. Depender (D1(What (D2(Dependee
· Depender depends on Dependee for What. What represents the dependum.
2. Depender (D1(How

· Depender depends on Dependee for How. The dependum is unknown.
3. Why (D1(What (D2(Dependee
· Why in Depender depends on Dependee for What. What represents the dependum.
4. Why (D1(How
· Why in Depender depends on Dependee for How. The dependum is unknown.
5. Depender (D1(Dependee
· Depender depends on Dependee. The dependum is unknown.

6. Why (D1(What (D2(How
· Why in Depender depends on How in Dependee for What. What represents the dependum.

d)
Model

None.

e)
Examples
The following examples are GRL diagrams illustrating the six configurations discussed in the semantics section. The same numbering scheme is used. Explanations follow each diagram.

[image: image15.emf]Store

Telecom

Provider

Internet

Connection

Figure 15/Z.151 Example: GRL dependencies (configuration 1)
1. The Store depends on the Telecom Provider to provide an Internet Connection (Error! Reference source not found.). This is a configuration that focuses solely on strategic dependencies between actors. Why and how the dependum is provided are unknown.
[image: image16.emf]Telecom

Provider

Store

Create

Account

Figure 16/Z.151 Example: GRL dependencies (configuration 2)
2. The Store depends on the Telecom Provider to create an account (Figure 16/Z.151). The dependum and why it is required are unknown.
[image: image17.emf]Store

Increase

Visibility

Telecom

Provider

Internet

Connection

Figure 17/Z.151 Example: GRL dependencies (configuration 3)
3. To increase its visibility, the Store depends on the Telecom Provider to provide an Internet Connection (Figure 17/Z.151). How the dependum is provided is unknown
[image: image18.emf]Store

Increase

Visibility

Telecom

Provider

Create

Account

Figure 18/Z.151 Example: GRL dependencies (configuration 4)
4. To increase its visibility, the Store depends on the Telecom Provider to create an account (Figure 18/Z.151). The dependum is unknown.
[image: image19.emf]Store

Telecom

Provider

Figure 19/Z.151 Example: GRL dependencies (configuration 5)
5. The Store depends on the Telecom Provider (Figure 19/Z.151). This is a configuration that is typical of preliminary goal models that require further refinement. A dependency is identified, but what, why and how are still unknown.
[image: image20.emf]Store

Increase

Visibility

Telecom

Provider

Create

Account

Internet

Connection

Figure 20/Z.151 Example: GRL dependencies (configuration 6)
6. To increase its visibility, the Store depends on the Telecom Provider to provide an Internet Connection by creating an account (Figure 20/Z.151). This is a configuration that details the dependum (the Internet connection) together with why it is required and how it is provided.
7.4.5 Decomposition

Decomposition links provide the ability to define what source intentional elements need to be satisfied or available in order for a target intentional element to be satisfied. The type of decomposition (AND, XOR, IOR) is specified by the decompositionType attribute of the target intentional element, so an intentional can be decomposed using one decomposition type only. See Figure 8/Z.151.
a)
Abstract grammar

Attributes

· Inherits attributes from ElementLink.
Relationships

· Inherits relationships from ElementLink.

Constraints

a. Inherits constraints from ElementLink.
b. Actors can neither be the source nor the destination of a decomposition.
c. Intentional elements of type Belief can neither be the source nor the destination of a decomposition.

b)
Concrete grammar

A Decomposition does not have a visual representation, but link references (LinkRef) in GRL diagrams do provide a graphical representation.

Relationships

· Inherits relationships from ElementLink.

c)
Semantics

Decomposition links connect the essential parts of an intentional element, which include subtasks that must be performed, subgoals that must be achieved, resources that must be accessible, and softgoals that must be satisfied. There is no ordering between the decomposing elements.
A Decomposition link enables the hierarchical decomposition (AND) of a target intentional element by a source element. A target intentional element can be decomposed into many source intentional elements using as many decomposition links. All of the source intentional elements are necessary for the target intentional element to be satisfied.

Decomposition link also enable the description of alternative means of satisfying a target intentional element (XOR for mutually exclusive alternatives, or IOR for alternatives that are not mutually exclusive). One of the source intentional elements is sufficient for the target intentional element to be satisfied.

Semantic variations

The following clause is non-normative.

Modellers may impose additional stylistic constraints on the well-formedness of decomposition links. For instance, tasks could be seen as the only semantically decomposable intentional element:

a. The target of a decomposition link must be a task intentional element.
d)
Model

None.

e)
Examples
Figure 21/Z.151 shows two representations of XOR decompositions. On the left, the goal is decomposed into two mutually exclusive alternatives presented as tasks. On the right, the same decomposition is presented using means-end relationships (with the same meaning). See sections 7.4.6 and 7.6.7 for the details of the concrete syntax.
[image: image21.emf]Make Voice

Connection

Over Wireless

Make Voice

Connection

Over Wireless

Make Voice

Connection

Over Internet

Make Voice

Connection

Over Internet

Voice

Connection

Be Setup

Voice

Connection

Be Setup

XOR

Make Voice

Connection

Over Wireless

Make Voice

Connection

Over Wireless

Make Voice

Connection

Over Internet

Make Voice

Connection

Over Internet

Voice

Connection

Be Setup

Voice

Connection

Be Setup

Figure 21/Z.151 Example: GRL XOR decomposition: normal (left) and means-end (right) presentations
7.4.6 DecompositionType

a)
Abstract grammar

An intentional element can be decomposed in one of three ways according to its decompositionType attribute: AND, XOR, or IOR. See Figure 8/Z.151.
Attributes

· None (enumeration metaclass).

Relationships

· Used by IntentionalElement.

Constraints

None.

b)
Concrete grammar

There is no specific icon for decomposition types. The name of the decomposition type itself (AND, XOR, or IOR) is used. See usage in LinkRef, section 7.6.7.

c)
Semantics
· AND decomposition: Each of the sub-intentional elements is necessary.

· XOR decomposition: One of the sub-intentional elements is sufficient, and one is selected.

· IOR decomposition: One of the sub-intentional elements is sufficient, but many can be selected.

7.5
GRL strategies

GRL strategies are sets of initial evaluation values given to some intentional elements in a GRL model. These evaluation values, which can be quantitative or qualitative, are satisfaction levels that can then be propagated to the other intentional elements in the GRL model through the various decomposition, contribution, and dependency links connecting them. Evaluations are used to determine how well goals in a model are achieved in a given context, which enables the selection of alternatives that represent appropriate trade-offs amongst the often conflicting goals of the stakeholders/actors involved. A good strategy provides rationale and documentation for decisions leading to requirements, providing better context for standards/system developers and implementers while avoiding unnecessary re-evaluations of worse alternative strategies.

[image: image22.emf]GRLmodelElement

QualitativeLabel

Denied

WeaklyDenied

WeaklySatisfied

Satisfied

Conflict

Unknown

None

<<enumeration>>

IntentionalElement

Evaluation

evaluation : Integer = 0

qualitativeEvaluation : QualitativeLabel = None

1

0..*intElement

1

evals

0..*

EvaluationStrategy

0..*

1

evaluations0..*

strategies1

StrategiesGroup

0..*

1..*

strategies

0..*

group

1..*

Figure 22/Z.151 Abstract grammar: GRL evaluation strategies

7.5.1 StrategiesGroup

A StrategiesGroup is a collection of evaluation strategies. It is used to organize evaluation strategies and to manipulate them as a group. See Figure 22/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from GRLmodelElement.
Relationships

· Inherits relationships from GRLmodelElement.

· Contained by GRLspec (1): StrategiesGroup instances are contained in the GRL specification (see Figure 6/Z.151).

· Association with EvaluationStrategy (0..*): A StrategiesGroup may refer to many evaluation strategies.
Constraints

· Inherits constraints from GRLmodelElement.
b)
Concrete grammar

A StrategiesGroup does not have a visual representation

Relationships

· Inherits relationships from GRLmodelElement.

c)
Semantics

None (StrategiesGroup is a structural concept only).

7.5.2 EvaluationStrategy

An EvaluationStrategy is a collection of evaluations. It is used to define satisfaction levels for a subset of the intentional elements of a GRL specification. An evaluation strategy provides the initial context for GRL model analysis based on a satisfaction propagation algorithm. The same evaluation strategy may be part of multiple groups of strategies. See Figure 22/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from GRLmodelElement.
Relationships

· Inherits relationships from GRLmodelElement.

· Contained by GRLspec (1): EvaluationStrategy instances are contained in the GRL specification (see Figure 6/Z.151).

· Association with StrategiesGroup (1..*): An EvaluationStrategy is referenced by at least one group of strategies.
· Composition of Evaluation (0..*): An EvaluationStrategy may contain many evaluations.
Constraints

· Inherits constraints from GRLmodelElement.
b)
Concrete grammar

An EvaluationStrategy does not have a visual representation.
Relationships

· Inherits relationships from GRLmodelElement.

c)
Semantics

The Evaluation instances contained in an EvaluationStrategy instance represent an initial context for the evaluation of a GRL model. Using a propagation algorithm (see section 11.1), the initial values specified in the evaluations are propagated to the intentional elements that do not have any initial evaluation value, through the element links that connect them.

7.5.3 Evaluation

An Evaluation instance provides initial quantitative and qualitative evaluation values to an intentional element. See Figure 22/Z.151.

a)
Abstract grammar

Attributes

· evaluation (Integer): Initial quantitative satisfaction value of the associated intentional element. Default value is 0.

· qualitativeEvaluation (QualitativeLabel): Initial qualitative satisfaction value of the associated intentional element. Default value is None.
Relationships

· Contained by EvaluationStrategy (1): An Evaluation instance is contained in one evaluation strategy.
· Association with IntentionalElement (1): An Evaluation provides initial evaluation values to one intentional element definition.
· Uses QualitativeLabel enumeration.
Constraints
a. evaluation (-100 and evaluation (100.

b)
Concrete grammar

An Evaluation does not have a visual representation. However, it may impact the presentation of intentional element references (see section 7.6.5)
c)
Semantics

An Evaluation defines the initial level of satisfaction of an intentional element. The level of satisfaction can be qualitative (see the contributions in section 7.5.4) and then qualitativeEvaluation will be used in goal model evaluations. The level of satisfaction can be also be quantitative (integer value between -100 for sufficiently denied and +100 for sufficiently satisfied) and then evaluation will be used in goal model evaluations. An evaluation value of 0 means that the intentional element is neither satisfied nor denied.

Only the relevant evaluation attribute is considered depending on the type of analysis (qualitative or quantitative). It is not required for evaluation and qualitativeEvaluation to be consistent as modellers may want to use only one type of analysis (qualitative or quantitative). However, it is recommended to keep them consistent if the modellers intend to switch between different types of analysis.

7.5.4 QualitativeLabel

A QualitativeLabel represents the qualitative satisfaction level of an intentional element. It can be one of the following values: Denied, WeaklyDenied, WeaklySatisfied, Satisfied, Conflict, Unknown, and None. See Figure 22/Z.151.

a)
Abstract grammar

Attributes

· None (enumeration metaclass).

Relationships

· Used by Evaluation.

Constraints

None.

b)
Concrete grammar

Figure 23/Z.151 lists the icons that are used to annotate GRL intentional elements according to their (qualitative) satisfaction level for a given strategy evaluation. See usage in IntentionalElementRef, section 7.6.5.

[image: image23.emf]

Satisfied

Weakly

Satisfied

UnknownDenied

Weakly

Denied

Conflict None

Figure 23/Z.151 Symbols: GRL qualitative labels
c)
Semantics

The qualitative satisfaction level of an intentional element can be one of the following values based on the degree (positive or negative) and magnitude of the satisfaction:

· Denied: The intentional element is sufficiently dissatisfied.

· WeaklyDenied: The intentional element is partially dissatisfied.
· WeaklySatisfied: The intentional element is partially satisfied.
· Satisfied: The intentional element is sufficiently satisfied.
· Conflict: There are conflicting arguments in favour and against the satisfaction of the intentional element.
· Unknown: The satisfaction level of the intentional element is unknown.
· None: The intentional element is neither satisfied nor dissatisfied.
d)
Model

An alternative presentation of the None satisfaction level is to simply omit the None icon on the intentional element. This makes GRL diagrams less crowded, without loss of information.

7.6 GRL concrete grammar metaclasses
The following concrete grammar metaclasses may be contained by some of the GRL abstract grammar metaclasses. They have no semantics.

[image: image24.emf]GRLmodelElement

IntentionalElementRef

IntentionalElement

0..*

1

refs

0..*

def

1

CollapsedActorRef

ConcreteStyle

lineColor : String

fillColor : String

filled : Boolean = false

0..1

0..1

style

0..1

elem

0..1

ConcreteGRLspec

showAsMeansEnd : Boolean = false

Actor

0..*

1

collapsedRefs

0..*

actor

1

0..1

0..1

style

0..1

actor

0..1

GRLspec

0..1

1

info

0..1

grlspec

1

ElementLink

LinkRefBendpoint

x : Integer

y : Integer

Position

x : Integer

y : Integer

ActorRef

1

0..1

pos

1

actorRef

0..1

1

0..*

actorDef

1

actorRefs

0..*

GRLGraph

1

0..*

grlspec

1

grlGraphs

0..*

1

0..*

diagram

1

contRefs

0..*

Size

width : Integer

height : Integer

1

0..1

size

1

actorRef

0..1

LinkRef

curve : Boolean = false

1

0..*

link

1

refs

0..*

0..*

1

bendpoints

0..*

linkref

1

{ordered}

1

0..*

diagram

1

connections

0..*

GRLNode

1

0..1

pos

1

grlNode

0..1

0..1

0..*

contRef

0..1

nodes

0..*

1

0..*

diagram

1

nodes

0..*

1

0..1

size

1

grlNode

0..1

0..*

1

pred

0..*

target

1

0..*

1

succ

0..*

source

1

Figure 24/Z.151 Concrete grammar: GRL concrete syntax metaclasses
7.6.1 ConcreteGRLspec
ConcreteGRLspec defines how GRL XOR Decomposition
 links should be displayed. Different modellers prefer a means-end presentation over an XOR decomposition presentation. GRL supports both as they have the same semantics. The representation choice is global for all GRL diagrams.
In the absence of a ConcreteGRLspec instance, the default presentation is the XOR decomposition.

a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar
ConcreteGRLspec does not have a visual representation, but it impacts the presentation of XOR decomposition links in GRL diagrams.

Attributes

· showAsMeansEnd (Boolean): Indicates whether GRL XOR Decomposition links should be displayed with a means-end graphical syntax (true) or simply with a OR decomposition graphical syntax (false). Default value is false.

Relationships

· Contained by GRLspec (1) [not navigable]: A ConcreteGRLspec instance is contained in the GRL specification.
7.6.2 GRLGraph

A GRLGraph is a container for all actor references, GRL nodes (collapsed actor references and intentional element references), and link references of a GRL diagram. In essence, a GRL graph (or diagram) is a view of the underlying GRL specification. See Figure 24/Z.151.
a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

GRLGraph represents the GRL diagram and as such has no concrete syntax except for Comments.

Attributes

· Inherits attributes from GRLmodelElement.
Relationships

· Inherits relationships from GRLmodelElement.

· Contained by GRLspec (1): GRLGraph instances are contained in the GRL specification.

· Composition of ActorRef (0..*): A GRLGraph may contain actor references.

· Composition of GRLNode (0..*): A GRLGraph may contain GRL nodes.
· Composition of LinkRef(0..*): A GRLGraph may contain link references.
· Composition of Comment (0..*): A GRLGraph may contain comments (see Figure 49/Z.151).
7.6.3 ActorRef

An actor reference (ActorRef) shows an actor and its boundary on a GRL diagram (GRLGraph). It refers to an Actor definition. An actor reference shows the actor’s boundary, where intentional elements may be included. In a URN specification, the same actor definition may be referenced many times in the same GRL diagram and in many GRL diagrams. See Figure 24/Z.151.
a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

The symbol for an actor reference is a circle, with the actor name (from superclass URNmodelElement) displayed inside the circle, together with its boundary, shown with a dashed-line ellipse (see Figure 25/Z.151). The line and fill colors of the actor reference are those of the actor definition’s concrete style (ConcreteStyle).
[image: image25.emf]

ActorRef

Figure 25/Z.151 Symbol: GRL actor reference
When analysing an EvaluationStrategy on the GRL specification, the name in the actor reference symbol can be supplemented with a symbol denoting the current satisfaction value of the actor (see section 11.1). Depending on the nature of the analysis, a qualitative label icon (i) or a quantitative integer value between parenteses (ii) can be used to annotate the actor reference symbol (see Figure 26/Z.151). The icons for the qualitative labels are defined in section 7.5.4 (QualitativeLabel).
[image: image26.emf]ActorRef ActorRef

(100)

i) With qualitative

satisfaction value

ii) With quantitative

satisfaction value

Figure 26/Z.151 Example: GRL actors with satisfaction values
The coordinate conventions of section 5.3.2 apply. The top-left corner of the ActorRef instance is indicated by its Position (x, y) and the bottom-right corner of the actor boundary by its Position and Size (x+width, y+height), as illustrated in Figure 27/Z.151. The Label is unused in this presentation. The same layout principles apply also to IntentionalElementRef and CollapsedActorRef instances.
[image: image27.emf]ActorRef

X axis

Y axis

(0,0)

x

y

width

height

Figure 27/Z.151 Layout: Position and size of ActorRef, IntentionalElementRef, and CollapsedActorRef
Attributes

· Inherits attributes from GRLmodelElement.
Relationships

· Inherits relationships from GRLmodelElement.

· Contained by GRLGraph (1): An ActorRef is contained in one GRL graph.
· Composition of Position (1): An ActorRef has a position.
· Composition of Size (1): An ActorRef has a size (for the actor boundary).
· Composition of Label (1): An ActorRef has a label.
· Association with Actor (1): An ActorRef refers to one actor definition.

· Association with GRLNode (0..*): An ActorRef may include many GRL nodes.

Constraints

a. Inherits constraints from GRLmodelElement.
b. The name of an ActorRef is the same as the name of its referenced Actor.
c. The name of an ActorRef is inside the actor symbol.
d. Rectangles containing the actor symbol and the actor boundary symbol share the same top-left corner.
c)
Semantics

None.

d)
Model

An alternate way of displaying an ActorRef instance is to omit the actor symbol, to add a stickman icon on the top-left side of the dashed ellipse, and to add a Label containing the name of the actor reference (i). This label can also contain the qualitative (ii) or quantitative (iii) satisfaction value of the corresponding actor resulting from the analysis of an EvaluationStrategy.
[image: image28.emf]ActorRef ActorRef ActorRef(100)

ii) With quantitative

satisfaction value

iii) With quantitative

satisfaction value

i) Alternative presentation

for an actor reference

Figure 28/Z.151 Symbol: Alternative presentation for actor references
The coordinate conventions of section 5.3.2 apply. The top-left corner of the ActorRef instance is indicated by its Position (x, y) and the bottom-right corner by its Position and Size (x+width, y+height). The bottom-left corner of the Label is relative to the Position (x-deltaX, y-deltaY). See Figure 57/Z.151 for an illustration of these layout principles.
7.6.4 GRLNode

GRLNode is an abstraction of intentional elements references and collapsed actor references in a GRL diagram. GRL nodes can be included in actor references and they have a position and a size.

a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

The concrete syntax for GRLNode is further defined in its subclasses.
Attributes

· Inherits attributes from GRLmodelElement.
Relationships

· Inherits relationships from GRLmodelElement.

· Contained by GRLGraph (1): A GRLNode is contained by one GRL graph.

· Composition of Position (1): A GRLNode has a position.
· Composition of Size (1): A GRLNode has a size.
· Composition of Label (1): A GRLNode has a label.
· Association with ActorRef (0..1): A GRLNode may be included in one actor reference.

· Association with LinkRef (succ, 0..*): A GRLNode may be the source of many link references in a diagram.
· Association with LinkRef (pred, 0..*): A GRLNode may be the target of many link references in a diagram.

· GRLNode is a superclass of IntentionalElementRef and CollapsedActorRef.
Constraints

a. Inherits constraints from GRLmodelElement.
b. All instances of GRLNode must appear in one of its subclasses (that is, metaclass GRLNode is abstract).

c. The GRLGraph instance that contains the GRLNode instance must be the same as the GRLGraph instance that contains LinkRef instances associated as pred.

d. The GRLGraph instance that contains the GRLNode instance must be the same as the GRLGraph instance that contains LinkRef instances associated as succ.

e. If the GRLNode instance is included in one ActorRef instance, then the GRLGraph instance that contains this GRL node must be the same as the GRLGraph instance that contains that actor reference.
f. If the GRLNode instance is included in one ActorRef instance, then the position and size of this GRL node must be such that the node is entirely contained inside the boundary of the actor reference.
7.6.5 IntentionalElementRef

An intentional element reference (IntentionalElementRef) shows an intentional element on a GRL diagram. Its presentation depends on the type of the intentional element definition it refers to. In a URN specification, the same intentional element definition may be referenced many times in the same GRL diagram and in many GRL diagrams. See Figure 24/Z.151.
a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

Figure 29/Z.151 lists the symbols used for intentional element references, which depend on the type of the intentional element definition they refer to: rounded-corner rectangle for Goal, cloud for Softgoal, hexagon for Task, rectangle for Resource, and ellipse for Belief.
[image: image29.emf]Goal Softgoal BeliefResourceTask

Figure 29/Z.151 Symbols: GRL intentional element references
The intentional element reference name is displayed inside the symbol. If the intentional element is contained in an actor, then the importance information may also be displayed following the name. If the importanceQualitative information is displayed, then (H) is used for High, (M) for Medium, and (L) for Low. None is not displayed. If the quantitative importance information is displayed, then the value is shown between parentheses, but only if greater than zero. See Figure 30/Z.151.
[image: image30.emf]Goal (H) Goal (95)

Figure 30/Z.151 Example: GRL intentional elements with importance values
The line and fill colors of the intentional element reference are those of the intentional element definition’s concrete style (ConcreteStyle).

When analysing an EvaluationStrategy on the GRL specification, the intentional element reference symbol can be supplemented with a symbol denoting the current evaluation value of the referenced intentional element definition (see Figure 31/Z.151). Depending on the nature of the analysis, a qualitative label icon (i), a quantitative integer value (ii), or both (iii) can be used to annotate the intentional element reference symbol. The icons for the qualitative labels are defined in section 7.5.4 (QualitativeLabel).
[image: image31.emf]Softgoal

i) With qualitative

label

SoftgoalSoftgoal

i) With qualitative

label

Softgoal

100

ii) With quantitative

value

SoftgoalSoftgoal

100

ii) With quantitative

value

Softgoal

100

iii) With both

SoftgoalSoftgoal

100

iii) With both

Figure 31/Z.151 Example: GRL intentional elements with satisfaction values
If the current EvaluationStrategy has an Evaluation for the referenced intentional element, then the current annotation is supplemented with a star (*), which indicates that this is an initial value for this strategy (see Figure 32/Z.151).

[image: image32.emf]SoftgoalSoftgoal SoftgoalSoftgoal

100

SoftgoalSoftgoal

100

* * *

Figure 32/Z.151 Example: GRL intentional elements with initial satisfaction values
The coordinate conventions of section 5.3.2 apply. The top-left corner of the IntentionalElementRef instance is indicated by its Position (x, y) and the bottom-right corner by its Position and Size (x+width, y+height), as explained in Figure 27/Z.151. The additional annotations are added above the symbol, starting from the left.
Attributes

· Inherits attributes from GRLNode.
Relationships

· Inherits relationships from GRLNode.

· Association with IntentionalElement (1): An IntentionalElementRef references one intentional element definition.

Constraints

a. Inherits constraints from GRLNode.
b. The name of an IntentionalElementRef is the same as the name of its IntentionalElement definition.
c. If the IntentionalElementRef instance is included by an ActorRef instance, then the referenced IntentionalElement definition must be included by the referenced Actor definition.
d. The name of an IntentionalElementRef is inside the intentional element symbol.

e. Intentional element symbols on a same GRL diagram must not overlap.
c)
Semantics

None.

d)
Model

The following clause is non-normative.

When evaluating a strategy on the GRL specification, the fill color of the intentional element symbol may be overridden temporarily to provide additional visual feedback about the satisfaction level of the referenced intentional element definition. For example, the following color scheme may be used: red for Denied, orange for WeaklyDenied, yellow for None, green-yellow for WeaklySatisfied, green for Satisfied, blue for Conflict, and white for Unknown.
7.6.6 CollapsedActorRef

A collapsed actor reference (CollapsedActorRef) shows an actor on a GRL diagram. It is presented as a circle, with the actor name displayed inside the circle.

A collapsed actor reference in a GRL diagram (GRLGraph) refers to an Actor definition. Unlike ActorRef, a collapsed actor reference does not show the actor’s boundary. In a URN specification, the same actor definition may be referenced many times in the same GRL diagram and in many GRL diagrams. See Figure 24/Z.151.

a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

The symbol for a collapsed actor reference is a circle, with the collapsed actor reference name displayed inside the circle (see Figure 33/Z.151). The line and fill colors of the collapsed actor reference are those of the actor definition’s concrete style (ConcreteStyle).
[image: image33.emf]Collapsed

ActorRef

Figure 33/Z.151 Symbol: GRL collapsed actor reference
When analysing an EvaluationStrategy on the GRL specification, the name in the actor reference symbol can be supplemented with a symbol denoting the current satisfaction value of the actor (see section 11.1). Depending on the nature of the analysis, a qualitative label icon (i) or a quantitative integer value between parenteses (ii) can be used to annotate the actor reference symbol (see Figure 34/Z.151). The icons for the qualitative labels are defined in section 7.5.4 (QualitativeLabel).
[image: image34.emf]ActorRef ActorRef

(100)

i) With quantitative

satisfaction value

ii) With quantitative

satisfaction value

Figure 34/Z.151 Example: GRL collapsed actor references with satisfaction values
The coordinate conventions of section 5.3.2 apply. The top-left corner of the CollapsedActorRef instance is indicated by its Position (x, y) and the bottom-right corner of the actor by its Position and Size (x+width, y+height), as explained in Figure 27/Z.151.
Attributes

· Inherits attributes from GRLNode.
Relationships

· Inherits relationships from GRLNode.

· Association with Actor (actorDef, 1): A CollapsedActorRef refers to one actor definition.
Constraints

a. Inherits constraints from GRLNode.
b. The name of a CollapsedActorRef is the same as the name of its referenced Actor.

c. The name of an ActorRef and its annotations are is inside the collapsed actor symbol.

d. Rectangles containing the actor symbol and the actor boundary symbol share the same top-left corner.

e. The boundary of an actor must not overlap with the boundary of another actor, unless it is entirely inside the boundary of that actor.

7.6.7 LinkRef

A link reference (LinkRef) displays with a line an element link instance (Contribution, Dependency, or Decomposition) between two GRL linkable elements on a GRL diagram (GRLGraph). A link reference is a directed link that connects a source GRL node to a different target GRL node. Link references can be shown as straight lines or as curved lines, and they can contain intermediate bend points. Depending on the nature of the referenced element link, various icons, line ends, and labels are displayed.

a)
Abstract grammar

None. This is a concrete syntax metaclass only.
b)
Concrete grammar

The symbol used to display the LinkRef depends on the type of ElementLink it represents. In the following definitions, each of the link symbols connects the source symbol (left) to the target symbol (right).

For a Contribution, the symbols for contribution and correlation links are different. In both cases however, the Label represents the value of the contribution and/or qualitativeContribution attributes of the Contribution instance (see ContributionType, section 7.4.3).

· If the value of the correlation attribute of the Contribution instance is false, then the symbol is an arrow with the head pointed at the target (see Figure 35/Z.151).
[image: image35.emf]
Figure 35/Z.151 Symbol: GRL contribution
· If the value of the correlation attribute of the Contribution instance is true (i.e., the link is a correlation), then the symbol is a dashed arrow with the head pointed at the target (see Figure 36/Z.151).

[image: image36.emf]
Figure 36/Z.151 Symbol: GRL correlation
· Depending on the purpose of the GRL model (for quantitative and/or qualitative analysis) the Label can include the icon of the qualitativeContribution only (i), a textual representation of the qualitativeContribution only (ii), both the icons and the textual representation of the qualitativeContribution (iii), the numerical contribution value (iv), or both the icon of the qualitativeContribution and the numerical contribution value (v). The choice of presentation should be left to the user. This applies to correlations as well. The position of the label is relative to the head of the arrow.
 The icons for the qualitative labels are defined in section 7.5.4 (QualitativeLabel). A fully satisfied contribution is used here as an example (see Figure 37/Z.151).
[image: image37.emf]i) Icon only

ii) Text only

iii) Icon and text

Make

Make

iv) Number only v) Icon and number

100

100

Figure 37/Z.151 Examples: GRL contribution links with contribution values
For a Dependency, the symbol is a line with a D on it (see Figure 38/Z.151). The flat side of the D is pointed at the source. There is no Label associated with a dependency link.

[image: image38.emf]
Figure 38/Z.151 Symbol: GRL dependency
For a Decomposition, the symbol is a line with a bar crossing it. The decompositionType of the target element (i.e., what is being decomposed) is also shown at the end of the line, on the target side. It is shown only once even if there are many decomposition links targeting that element. There is no Label associated with a decomposition link.

· If there is no ConcreteGRLspec instance or if the value of the showAsMeansEnd attribute of the ConcreteGRLspec instance is false, then the different types of decomposition links are presented in Figure 39/Z.151:

[image: image39.emf]AND IOR

XOR

Figure 39/Z.151 Symbol: GRL decompositions
· If the value of the showAsMeansEnd attribute of the ConcreteGRLspec instance is true, then the XOR decomposition is shown with an open-headed arrow (i.e., as a means-end relationship, see Figure 40/Z.151). The presentation of the two other types of decompositions remains unchanged.

[image: image40.emf]
Figure 40/Z.151 Symbol: GRL means-end
The line presentation of a LinkRef instance starts at the source symbol, goes through the ordered list of bend points (if any), and stops at the target symbol. The line segments are straight if the value of the curve attribute of the link reference is false. If the value of the curve attribute of the link reference is true, then the bend points are part of a curved line that connects the start symbol to the target symbol.

Attributes

· Inherits attributes from GRLmodelElement.

· curve (Boolean): Indicates whether the link should be displayed as a straight line (false) or as a curved line (true). Default value is false.
Relationships

· Inherits relationships from GRLmodelElement.

· Contained by GRLGraph (1): A LinkRef is contained by one GRL graph.

· Composition of Label (0..1): A LinkRef may have one label.
· Composition of LinkRefBendpoint (0..*) {ordered}: A LinkRef may have an ordered collection of link reference bend points.
· Association with ElementLink (1): A LinkRef represents one element link.

· Association with GRLNode (source, 1): A LinkRef has one source link GRL node.

· Association with GRLNode (target, 1): A LinkRef has one source link GRL node.
Constraints
a. Inherits constraints from GRLmodelElement.
b. The source and target GRL nodes must be different.
c. The LinkRef instance has a Label if and only if the ElementLink instance to which the LinkRef refers is a Contribution.
d. If the source GRL node is an IntentionalElementRef instance, then the IntentionalElement definition referenced by that source must be the source of the ElementLink instance to which the LinkRef refers.

e. If the target GRL node is an IntentionalElementRef instance, then the IntentionalElement definition referenced by that target must be the destination of the ElementLink instance to which the LinkRef refers.
f. If the source GRL node is a CollapsedActorRef instance, then the Actor definition referenced by that source must be the source of the ElementLink instance to which the LinkRef refers.
g. If the target GRL node is a CollapsedActorRef instance, then the Actor definition referenced by that target must be the destination of the ElementLink instance to which the LinkRef refers.
h. The line connects the border of the source symbol to the border of the target symbol.
c)
Semantics

None.

d)
Model
For dependency links, the D on the line can also be filled (see Figure 41/Z.151). There is no semantic distinction between a non-filled and a filled D.
[image: image41.emf]
Figure 41/Z.151 Alternative presentation for GRL dependencies
For an IOR decomposition link, the presention can use OR at the target end instead of IOR, for simplicity (see Figure 42/Z.151).

[image: image42.emf]OR

Figure 42/Z.151 Alternative presentation for IOR decomposition
e)
Examples

Several examples were already presented in sections 7.4.2, 7.4.4, and 7.4.5. The following GRL diagrams illustrate the effects of bend points on straight and curved lines. This link reference to a dependency that goes from softgoal to a task has two bendpoints.
If the value of the curve attribute is false, then straignt line segments are used (Figure 43/Z.151).
[image: image43.emf]Store

Increase

Visibility

Telecom

Provider

Create

Account

Figure 43/Z.151 Example: GRL link with two bend points shown with straight lines
If on the other hand the value of the curve attribute is true, then a curved line that passes through all the bend points is used (Figure 44/Z.151).
[image: image44.emf]Store

Increase

Visibility

Telecom

Provider

Create

Account

Figure 44/Z.151 Example: GRL link with two bend points shown as a curved line
7.6.8 Label

A Label can be attached to many types of URN model elements. It indicates the position of the name (or another attribute) of the element relative (in X and Y) to the position of that element. See Figure 45/Z.151.
[image: image45.emf]ComponentRef

ActorRefPathNodeGRLNode

LinkRef

NodeConnection

Label

deltaX : Integer

deltaY : Integer

0..1

0..1compRef

0..1

label

0..1

0..1

1

actorRef

0..1

label

1

0..1

0..1

pathNode

0..1

label

0..1

0..1

1

grlNode

0..1

label

1

0..1

0..1

label

0..1

linkRef

0..1

0..1

0..1

label

0..1

nodeCon

0..1

Condition

0..1

0..1

label

0..1

condition

0..1

Figure 45/Z.151 Concrete grammar: Label metaclass
a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

The content displayed by the Label instance depends on the kind of URN model element instance that contains it.

Attributes

· deltaX (Integer): The relative position, measured in point units, along the horizontal (X) axis of the relevant labelled attribute of the containing URN model element. Can be positive (to the left of the symbol) or negative (to the right of the symbol).

· deltaY (Integer): The relative position, measured in point units, along the vertical (Y) axis of the relevant labelled attribute of the containing URN model element. Can be positive (above the symbol) or negative (below the symbol).

Relationships

· Contained by ActorRef. (0..1) [not navigable]: A Label may be contained by one actor reference.

· Contained by Condition (0..1) [not navigable]: A Label may be contained by one condition.
· Contained by ComponentRef (0..1) [not navigable]: A Label may be contained by one component reference.
· Contained by GRLNode (0..1) [not navigable]: A Label may be contained by one GRL node.

· Contained by LinkRef (0..1) [not navigable]: A Label may be contained by one link reference.

· Contained by NodeConnection (0..1) [not navigable]: A Label may be contained by one node connection.
· Contained by PathNode (0..1) [not navigable]: A Label may be contained by one path node.

Constraints

a. A Label instance must be contained by exactly one instance of type ActorRef, Condition, ComponentRef, GRLNode, LinkRef, NodeConnection, or PathNode.

7.6.9 LinkRefBendpoint

A bend point is a fixed point on a GRL diagram through which a link reference must pass. This enables to break the line connecting a source to a target element into several connected segments (straight or curved).
a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

None. However, bend points influence the rendering of link references on a GRL diagram.

Attributes

· x (Integer): Horizontal coordinate (on the X axis) of the bend point, in point units.

· y (Integer): Vertical coordinate (on the Y axis) of the bend point, in point units.

Relationships

· Contained by LinkRef (1) [not navigable]: The LinkRefBendpoint instance is contained in one link reference.
Constraints

a. The line representation of the LinkRef instance that contains the LinkRefBendpoint instance must pass through the specified bend point.
7.6.10 Position

The Position metaclass is used to specify the position of various graphical elements in GRL and UCM diagrams. See Figure 46/Z.151.
[image: image46.emf]GRLNode

ActorRef

ComponentRef

PathNode

Position

x : Integer

y : Integer

0..1

1

grlNode

0..1

pos

1

0..1

1

actorRef

0..1

pos

1

0..1

0..1

compRef

0..1

pos

0..1

0..1

0..1

pathNode

0..1

pos

0..1

Figure 46/Z.151 Concrete grammar: Position metaclass
a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

An instance of Position specifies the horizontal and vertical coordinates of the graphical model element where it is contained. These coordinates can be positive or negative. The coordinate conventions of section 5.3.2 apply.

Attributes

· x (Integer): Horizontal coordinate (on the X axis), in point units, of the graphical element containing the Position instance.
· y (Integer): Vertical coordinate (on the Y axis), in point units, of the graphical element containing the Position instance.
Relationships

· Contained by PathNode (0..1) [not navigable]: The Position instance may be contained in one UCM path node.

· Contained by ComponentRef (0..1) [not navigable]: The Position instance may be contained in one UCM component reference.

· Contained by ActorRef (0..1) [not navigable]: The Position instance may be contained in one GRL actor reference.

· Contained by GRLNode (0..1) [not navigable]: The Position instance may be contained in one GRL node (i.e., a collapsed actor reference or an intentional element reference).
Constraints

a. Each Position instance is contained in exactly one instance of type PathNode, ComponentRef, ActorRef, or GRLNode.
7.6.11 Size

The Size metaclass is used to specify the size of various graphical elements in GRL and UCM diagrams. See Figure 47/Z.151.
[image: image47.emf]ComponentRef

ActorRef

Size

width : Integer

height : Integer

0..1

1

actorRef

0..1

size1

0..10..1

compRef

0..1

size

0..1

GRLNode

0..11

grlNode

0..1

size

1

Figure 47/Z.151 Concrete grammar: Size metaclass
a)
Abstract grammar

None. This is a concrete syntax metaclass only.
b)
Concrete grammar

An instance of Size specifies the width and height of the graphical model element where it is contained. The coordinate conventions of section 5.3.2 apply.
Attributes

· width (Integer): The width of the graphical element containing the Size instance, in point units.
· height (Integer): The height of the graphical element containing the Size instance, in point units.
Relationships

· Contained by ComponentRef (0..1) [not navigable]: The Size instance may be contained in one UCM component reference.

· Contained by ActorRef (0..1) [not navigable]: The Size instance may be contained in one GRL actor reference.

· Contained by GRLNode (0..1) [not navigable]: The Size instance may be contained in one GRL node (i.e., a collapsed actor reference or an intentional element reference).
Constraints

a. width > 0 and
b. height > 0
c. Each Size instance is contained in exactly one instance of type ComponentRef, ActorRef, or GRLNode.

7.6.12 ConcreteStyle

The ConcreteStyle metaclass is used to specify the color of various graphical elements in GRL and UCM diagrams. This information is attached to the definitions of intentional elements, actors, and components so their references can be colored consistently across diagrams. See Figure 48/Z.151.

[image: image48.emf]IntentionalElement

Actor

Component

ConcreteStyle

lineColor : String

fillColor : String

filled : Boolean = false

0..10..1

elem

0..1

style

0..1

0..1

0..1

actor

0..1

style

0..1

0..1

0..1

component

0..1

style

0..1

Figure 48/Z.151 Concrete grammar: ConcreteStyle metaclass
a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

An instance of ConcreteStyle specifies the fill and line colors of the model element where it is contained, and whether this element should use the fill color or not. References to a model element can then use these colors across diagrams in a consistent way.
Colors are represented as a string using a red, green, and blue color model. The intensity of each color component is encoded as a value between 0 (lowest intensity) and 255 (highest intensity) inclusively. The values for red, green, and blue are separated by commas. For example, “255,255,0” represents the color yellow.
Attributes

· lineColor (String): Color of the outside line of the references to the element containing the ConcreteStyle instance.

· fillColor (String): Fill color of the references to the element containing the ConcreteStyle instance.

· filled (Boolean): Indicates whether the fill color should be used. Default value is false.

Relationships

· Contained by Actor (0..1) [not navigable]: The ConcreteStyle instance may be contained in one GRL actor.

· Contained by IntentionalElement (0..1) [not navigable]: The ConcreteStyle instance may be contained in one GRL intentional element.

· Contained by Component (0..1) [not navigable]: The ConcreteStyle instance may be contained in one UCM component.

Constraints

a. Each ConcreteStyle instance is contained in exactly one instance of type Actor, IntentionalElement, or Component.
7.6.13 Comment

The Comment metaclass is used to add graphical comments to GRL and UCM diagrams. See Figure 49/Z.151.

[image: image49.emf]UCMmap

Comment

description : String

x : Integer

y : Integer

width : Integer

height : Integer

fillColor : String

0..*

0..1

comments

0..*

ucmmap

0..1

GRLGraph

0..*

0..1

comments

0..*

grlGraph

0..1

Figure 49/Z.151 Concrete grammar: Comment metaclass
a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar

A Comment is illustrated using the following symbol, with the description string displayed in the middle of the symbol (see Figure 50/Z.151). The description text is wrapped on multiple lines according to the width.
[image: image50.emf]Description text

of the comment

Symbol: URN comment
The coordinate conventions of section 5.3.2 apply. The top-left corner of the Comment instance is at (x, y) and the bottom-right corner at (x+width, y+height).
Attributes

· description (String): The text to be displayed in the Comment instance.

· x (Integer): Horizontal coordinate (on the X axis) of the Comment instance, in point units.

· y (Integer): Vertical coordinate (on the Y axis) of the Comment instance, in point units.

· width (Integer): Width of the Comment instance, in point units.

· height (Integer): Height of the Comment instance, in point units.

· fillColor (String): Fill color of the Comment instance. The color conventions of ConcreteStyle apply.

Relationships

· Contained by UCMmap (0..1) [not navigable]: The Comment instance may be contained in one UCM map.

· Contained by GRLGraph (0..1) [not navigable]: The Comment instance may be contained in one GRL graph.
Constraints
a. width > 0 and height > 0

b. Each Comment instance is contained in exactly one instance of type UCMmap or GRLGraph.
8 UCM features

The Use Case Map notation provides a set of URN features that enable the description and analysis of use cases and scenarios. The UCM features are grouped under seven categories:

· Section 8.1: UCM basic structural features
· Section 8.2: UCM maps and path nodes
· Section 8.3: UCM stubs and plug-ins
· Section 8.4: UCM components
· Section 8.5: UCM scenario definitions
· Section 8.6: UCM performance annotations
· Section 8.7: UCM concrete grammar metaclasses
Note that many of the concrete grammar metaclasses used by UCM features were already defined for GRL in section 7.6. Only the ones specific to UCM are defined in section 8.7.
8.1 UCM basic structural features

The UCM basic structural features describe containers for UCM specifications, as well as definitions of UCM model elements. The abstract syntax metaclasses are presented in this section. There are no specific concrete grammar metaclasses for these features.

8.1.1 UCMspec

UCMspec serves as a container for the UCM specification elements. See Figure 51/Z.151.

[image: image51.emf]EnumerationType

VariableScenarioGroup

GeneralResource

UCMmap

Component

ComponentTypeResponsibility

UCMspec

1

0..*

ucmspec

1enumerationTypes

0..*

1

0..*

ucmspec

1

variables

0..*

1

0..*

ucmspec

1

scenarioGroups

0..*

1

0..*

ucmspec

1

resources

0..*

0..*

1

ucmMaps

0..*

ucmspec

1

0..*

1

components

0..*

ucmspec

1

0..*

1

componentTypes0..*

ucmspec

1

0..*

1

responsibilities

0..*

ucmspec

1

Figure 50/Z.151 Abstract grammar: UCM specification

a)
Abstract grammar

Attributes

None.

Relationships

· Contained by URNspec (1): The UCMspec instance is contained in the URN specification (see Figure 2/Z.151).

· Composition of UCMmap (0..*): A UCMspec may contain UCM maps.

· Composition of Responsibility (0..*): A UCMspec may contain responsibility definitions.

· Composition of ComponentType (0..*): A UCMspec may contain component types.

· Composition of Component (0..*): A UCMspec may contain component definitions.

· Composition of EnumerationType (0..*): A UCMspec may contain enumeration types.

· Composition of Variable (0..*): A UCMspec may contain variables.

· Composition of ScenarioGroup (0..*): A UCMspec may contain scenario groups.

· Composition of GeneralResource (0..*): A UCMspec may contain general resources.

Constraints

None.

b)
Concrete grammar
None.

c)
Semantics

None (UCMspec is a structural concept only).

8.1.2 UCMmodelElement

A UCMmodelElement is a URN model element specialized for UCM concepts. See Figure 52/Z.151.

[image: image52.emf]UCMmodelElementResponsibility

ScenarioDef

Workload

ComponentType

Component

ComponentRef

PathNode

EnumerationType

Variable

ScenarioGroup

GeneralResource

UCMmap

Figure 51/Z.151 Abstract grammar: UCM model elements

a)
Abstract grammar

Attributes

· Inherits attributes from URNmodelElement.
Relationships

· Inherits relationships from URNmodelElement.
· UCMmodelElement is a superclass of UCMmap, ComponentRef, ComponentType, Component, Workload, GeneralResource, PathNode, Variable, EnumerationType, Responsibility, ScenarioGroup, and ScenarioDef.

Constraints

a. Inherits constraints from URNmodelElement.

b. All instances of UCMmodelElement must appear in one of its subclasses (that is, metaclass UCMmodelElement is abstract).

b)
Concrete grammar

The concrete syntax for UCMmodelElement is further defined in its subclasses.

Relationships

· Inherits relationships from URNmodelElement.

c)
Semantics

A UCMmodelElement is a uniquely identifiable UCM model element that can contain metadata and be linked to other model elements. Its subclasses may have additional attributes and relationships.

8.2 UCM maps and path nodes

UCMmaps and PathNodes enable modelling of scenario behavior by specifying causal relationships between path nodes on one or more UCM maps. A map contains any number of paths and structural elements (see section 8.4). Paths express the causal flow of behavior of a system and may contain several types of path nodes, expressing actions, sequence, alternatives, and concurrency as well as the beginning and end of scenarios. See Figure 53/Z.151.

Hierarchical structuring of maps with the help of stubs and plug-in maps is covered in section 8.3.

[image: image53.emf]Connect

OrJoinAndJoin

StartPoint

WaitingPlace

waitType : WaitKind = None

EndPoint

Stub

dynamic : Boolean = false

synchronizing : Boolean = false

blocking : Boolean = false

OrForkAndFork

EmptyPoint

WaitKind

None

Transient

Persistent

<<enumeration>>

RespRef

repetitionCount : String = "1"

hostDemand : String

Responsibility

expression : String

1..*

1

respRefs

1..*

respDef

1

Timer

UCMmap

singleton : Boolean = true

NodeConnection

probability : Nat = 100

0..1

0..1

timer

0..1

timeoutPath

0..1

1

0..*

diagram

1

connections

0..*

PathNode

1

0..*

diagram

1

nodes

0..*

0..*

1

succ

0..*

source

1

0..*

1

pred

0..*

target

1

Figure 52/Z.151 Abstract grammar: UCM paths and path nodes

8.2.1 UCMmap

UCMmap serves as a container for all path nodes and component references of a map. A map may be a singleton, i.e., only one instance of it exists in the UCM specification. A map may be reused as a plug-in map for stubs. See Figure 53/Z.151, Figure 55/Z.151, and Figure 56/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
· singleton (Boolean): Indicates whether one (true) or more (false) runtime instances of a UCMmap may exist in the UCM specification. Default value is true (i.e., only one instance may exist).

Relationships

· Inherits relationships from UCMmodelElement.
· Contained by UCMspec (1): UCMmap instances are contained in the UCM specification (see Figure 51/Z.151).

· Composition of PathNode (0..*): A UCMmap may contain path nodes.

· Composition of NodeConnection (0..*): A UCMmap may contain node connections.

· Composition of ComponentRef (0..*): A UCMmap may contain component references.

· Association with PluginBinding (0..*): A UCMmap may be used as a plug-in map in many plug-in bindings.

Constraints

a. Inherits constraints from UCMmodelElement.

b)
Concrete grammar
UCMmap represents the map diagram and as such has no concrete syntax except for Comments.

Relationships

· Inherits relationships from UCMmodelElement.

· Composition of Comment (0..*): A UCMmap may have many comments (see Figure 49/Z.151).

c)
Semantics

A UCMmap may contain zero or many UCM paths consisting of NodeConnections and PathNodes which may optionally as well as partially be bound to structural elements called components via ComponentRefs. A singleton map exists only once in the UCM specification, i.e. if the same singleton map is used as a plug-in map (see PluginBinding) for two different stubs (see Stub), the same (and only) instance of the map in the UCM specification is used for both stubs. If, however, the map is not a singleton, a different map instance is used for each different instance of a stub that uses the map as its plug-in map. For a more detailed discussion on instances of maps in the UCM specification, see section 8.3.1.
8.2.2 PathNode

PathNode is a UCM model element that represents all possible path nodes on a UCM path. Path nodes may express actions, alternatives (choice points and merge points), and concurrency (parallel branching points and synchronization points) as well as the beginning and end of scenarios. Path nodes may optionally be bound (i.e., allocated) to component references. See Figure 53/Z.151 and Figure 56/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
Relationships

· Inherits relationships from UCMmodelElement.
· Contained by UCMmap (1): A PathNode instance is contained in one UCM map.

· Association with NodeConnection (pred, 0..*): A PathNode may be the source of many node connections.

· Association with NodeConnection (succ, 0..*): A PathNode may be the target of many node connections.

· Association with ComponentRef (0..1): A PathNode may be bound to one component reference.

· PathNode is a superclass of RespRef, WaitingPlace, OrFork, AndFork, OrJoin, AndJoin, Stub, EndPoint, StartPoint, EmptyPoint, and Connect.

Constraints

a. Inherits constraints from UCMmodelElement.

b. All instances of PathNode must appear in one of its subclasses (that is, metaclass PathNode is abstract).

c. The UCMmap instance that contains the PathNode instance must be the same as the UCMmap instance that contains NodeConnection instances associated as pred.

d. The UCMmap instance that contains the PathNode instance must be the same as the UCMmap instance that contains NodeConnection instances associated as succ.

e. If the PathNode instance is included in one ComponentRef instance, then the UCMmap instance that contains this PathNode instance must be the same as the UCMmap instance that contains the ComponentRef instance.
b)
Concrete grammar
The concrete syntax for PathNode is further defined in its subclasses. If a path node has a Position, the path node is placed on its UCMmap according to Position coordinates.
The coordinate conventions of section 5.3.2 apply. The center of the PathNode instance is indicated by its Position (x, y). The bottom-center of the Label (if any) is relative to the Position (x-deltaX, y-deltaY). Similarly, the bottom-center of the Label of the path node’s Condition (if any) is relative to the path node’s Position (x-deltaX, y-deltaY) See Figure 54/Z.151 for an illustration of these layout principles.
[image: image54.emf]X axis

Y axis

(0,0)

x

y

TheLabel

deltaX

deltaY

[TheCondition]

deltaX

deltaY

Figure 53/Z.151 Layout: Position, label, and condition for PathNode
Relationships

· Inherits relationships from UCMmodelElement.

· Composition of Label (0..1): A PathNode may have one label (see Figure 45/Z.151).

· Composition of Position (0..1): A PathNode may have one position (see Figure 46/Z.151).

Constraints

f. If the PathNode instance is bound to one ComponentRef instance, then the Position of this PathNode instance must be such that the node is entirely contained inside the boundary of the ComponentRef instance.
g. A PathNode instance that is not a Connect instance has one and only one Position.
c)
Semantics

A PathNode exists on one UCM map and may optionally be bound to one component reference. Path nodes are arranged in a directed graph with the help of node connections that link source path nodes with target path nodes. Subclasses of path nodes differ among other things in terms of how many path branches (in short branches) may arrive at a path node and how many branches may leave a path node. Further semantics for a path node is therefore defined in the sections for the subclasses of path nodes.

8.2.3 NodeConnection

NodeConnection establishes a directed graph of path nodes by linking a source path node with a target path node. Node connections have a probability value stating for certain pairs of source and target path nodes the likelihood with which the link between the pair of path nodes is taken in the UCM specification. See Figure 53/Z.151 and Figure 55/Z.151.

a)
Abstract grammar

Attributes

· probability (Nat): The probability with which this node connection is taken in the UCM specification. Default value is 100.

Relationships

· Contained by UCMmap (1): A NodeConnection instance is contained in one UCM map.
· Composition of Condition (0..1): A NodeConnection may contain one condition.

· Association with PathNode (source, 1): A NodeConnection has one source path node.

· Association with PathNode (target, 1): A NodeConnection has one target path node.

· Association with InBinding (0..*): A NodeConnection may have many in-bindings.

· Association with OutBinding (0..*): A NodeConnection may have many out-bindings.

· Association with Timer (0..1): A NodeConnection may represent the timeout path of a timer.

Constraints

a. probability (0 and probability (100.
b. The value of probability may be less than 100 only for a NodeConnection with a source path node of type OrFork or Timer.

c. A NodeConnection may have one Condition only if a) the source path node of the NodeConnection is of type Stub with its synchronizing attribute equalling to true or b) the source path node of the NodeConnection is of type OrFork, AndFork, AndJoin, or WaitingPlace.

d. A NodeConnection may have an InBinding only if the target path node of the NodeConnection is of type Stub.

e. A NodeConnection may have an OutBinding only if the source path node of the NodeConnection is of type Stub.

f. If a NodeConnection instance represents a timeout path of a Timer instance, the source path node of the NodeConnection instance is the same Timer instance.

b)
Concrete grammar
A NodeConnection is rendered as a curve line between the two linked PathNodes. If a Condition is defined for the node connection, the label of the ConcreteCondition contained by the condition is displayed in square brackets and italic font next to the symbol according to Label coordinates. If no label attribute is defined for the concrete condition, then the square brackets also do not need to be shown.
Relationships

· Composition of Label (0..1): A NodeConnection may have one label (see Figure 45/Z.151).
Constraints

g. A NodeConnection may have one Label only if the source path node of the NodeConnection is of type OrFork, AndFork, AndJoin, WaitingPlace, or Stub.

c)
Semantics

The directed graph of PathNodes linked by NodeConnections is at the core of the traversal of UCMs, as paths in the UCM specification are traversed according to these links and the semantics of the path nodes. In the simplest case, a path node may appear in a node connection once as a source path node and once as a target path node, thus representing the causal ordering of a sequence. Other path nodes may be the source path node or target path node in several node connections, thus representing choice point, merging points, concurrent branching points, and synchronization points. Further semantics for a node connection of path nodes is defined in the sections for the subclasses of PathNode.

It is not required that the directed graph is well-nested in terms of its branching and merging constructs, i.e. the path nodes OrFork, OrJoin, AndFork, and AndJoin. For example
, an OrFork may never be followed by an OrJoin, or an OrFork may be followed by an AndJoin.

A node connection may have a probability which expresses the likelihood that the link from the source path node to the target path node is taken. The value of probability is expressed in percent, i.e., 100 means that the link is taken, 0 means that the link is not taken, and 75 means that there is a 3:1 chance that the link is taken. Only certain node connections can have probabilities as defined in the Constraints subsection of this section, i.e., probabilities make only sense for OR-forks and timers. Node connections may also have a condition which must be fulfilled (i.e., must evaluate to true) before the link from the source path node to the target path node can be taken. Only certain node connections can have conditions as defined in the Constraints subsection of this section, i.e., conditions make only sense for OR-forks, AND-forks, AND-joins, and waiting places. The conditions for AND-forks and AND-joins are only required to flatten hierarchical UCM specifications (see 8.3 for an explanation), and are therefore not considered in the concrete syntax.
Node connections also play a role in the hierarchical structuring of UCM specifications through InBindings and OutBindings as explained in section 8.3.
8.2.4 Condition

Condition is either a Boolean expression that serves as a guard, precondition, or postcondition, or an Integer expression that serves as a threshold. See Figure 55/Z.151 and Figure 58/Z.151.

a)
Abstract grammar

Attributes

· expression (String): The Boolean or Integer expression of the condition.

Relationships

· Contained by Concern (0..1) [not navigable]: A Condition instance may be contained in a concern (see Figure 3/Z.151).

· Contained by StartPoint (0..1) [not navigable]: A Condition instance may be contained in a start point.

· Contained by EndPoint (0..1) [not navigable]: A Condition instance may be contained in an end point.

· Contained by PluginBinding (0..1) [not navigable]: A Condition instance may be contained in a plug-in binding.

· Contained by NodeConnection (0..1) [not navigable]: A Condition instance may be contained in a node connection.

· Contained by ScenarioDef (scenarioDefPre, 0..1) [not navigable]: A Condition instance may be the precondition of a scenario definition.

· Contained by ScenarioDef (scenarioDefPost, 0..1) [not navigable]: A Condition instance may be the postcondition of a scenario definition.

Constraints

a. The expression of a Condition contained in a NodeConnection with a Stub as its source node must evaluate to an Integer value greater or equal to zero.
b. The expression of a Condition not contained in a NodeConnection with a Stub as its source node must evaluate to a Boolean value (i.e., either true or false).
c. The expression must be well-formed
 as defined in section 9 – Data language.

d. Each Condition instance is contained in exactly one instance of type Concern, StartPoint, EndPoint, PluginBinding, NodeConnection, or ScenarioDef.

b)
Concrete grammar
Condition has no concrete syntax, but the label of the ConcreteCondition contained by the condition is visualized.
Relationships

· Composition of ConcreteCondition (0..1): A Condition may have one concrete condition (see Figure 60/Z.151).

· Composition of Label (0..1): A Condition may have one label (see Figure 45/Z.151).

c)
Semantics

The expression of a Condition not contained by a Concern is evaluated at runtime when the model element to which the condition belongs is reached during the path traversal of the UCM specification. The evaluation results in either true or false.
The expression of a Condition contained by a Concern indicates whether the grouping of model elements identified by the concern is to be enabled in the UCM specification (true) or disabled (false). Disabled model elements are treated like model elements that were never defined.
The expression may make use of globally defined Variables and must be well-formed according to the rules detailed in section 9.

8.2.5 Responsibility

A Responsibility is a reusable definition of a scenario activity representing something to be performed (operation, action, task, function, etc.) or in other words a step in the scenario. Responsibility definitions (or in short responsibilities) are referenced from UCM maps by responsibility references. An expression allows for the formal definition of more detailed behavior of a responsibility with respect to the global data model of the URN specification
. See Figure 53/Z.151.

Attributes

· Inherits attributes from UCMmodelElement.
· expression (String): The expression of the responsibility is a multi-line statement that describes the impact of the responsibility on the global data model of the UCM specification.

Relationships

· Inherits relationships from UCMmodelElement.
· Contained by UCMspec (1): Responsibility instances are contained in the UCM specification (see Figure 51/Z.151).

· Composition of Demand (0..*): A Responsibility may contain demands (see Figure 59/Z.151).

· Association with RespRef (1..*): A Responsibility may be the definition for one or more responsibility references.

Constraints

a. Inherits constraints from UCMmodelElement.

b. Any two Responsibility instances cannot share the same name inside a URN specification.
c. The name of a Responsibility instance cannot be an empty String.
d. The expression must be well-formed
 as defined in section 9 – Data language.
b)
Concrete grammar
Responsibility has no concrete syntax, but responsibility references (see RespRef) for the responsibility definition are visualized.

Relationships

· Inherits relationships from URNmodelElement.

c)
Semantics

Responsibility defines required actions or steps to fulfill a scenario, either informally through its name or more formally with the help of its expression. The expression may make use of globally defined Variables. When the traversal of a scenario path reaches a responsibility reference (RespRef), the expression defined in the associated responsibility definition is executed. This may change the values of variables in the global data model of the UCM specification. If the expression results in a division by zero, the traversal of the scenario path stops at the responsibility reference and an error is generated.
Responsibilities also play a role in the performance analysis of UCM specifications through Demands as explained in section 8.6.
8.2.6 RespRef

RespRef is a path node that references a responsibility definition. See Figure 53/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from PathNode.
· repetitionCount (String): The repetition count is an Integer expression that indicates how often the responsibility is repeated at runtime.

· hostDemand (String): The demand is an Integer expression that indicates demand on the processing resource of the component reference to which the responsibility reference is bound.

Relationships

· Inherits relationships from PathNode.
· Association with Responsibility (1): A RespRef has one responsibility definition.

Constraints

a. Inherits constraints from PathNode.

b. The name of a RespRef instance must be the same as the name of its associated Responsibility instance.

c. The repetitionCount must evaluate to a positive Integer value (repetitionCount > 0).
d. The repetitionCount must be well-formed
 as defined in section 9 – Data language.

e. The hostDemand must evaluate to a positive Integer value (hostDemand > 0).
f. The hostDemand must be well-formed
 as defined in section 9 – Data language.

g. A RespRef instance is the source PathNode of one and only one NodeConnection.

h. A RespRef instance is the target PathNode of one and only one NodeConnection.

b)
Concrete grammar

The symbol for RespRef on a UCM path is defined as an X with the responsibility name (from superclass URNmodelElement) displayed next to the symbol according to Label coordinates.
[image: image55.emf]……

RespRef

……

RespRef

Relationships

· Inherits relationships from PathNode.

Constraints

i. Inherits constraints from PathNode.

j. A RespRef instance must have one Label.
c)
Semantics

RespRef allows for the reuse of the same Responsibility in multiple locations on one or more UCMmaps.
The repetitionCount is an Integer expression that indicates how often the same responsibility reference is repeated. It is equivalent to N consecutive responsibility references to the same responsibility definition placed in a sequence on a UCM path, with N being the resulting value of the repetition count expression.
The hostDemand is used for performance analysis and describes the demand the responsibility reference exerts on a ProcessingResource. The demand applies to the processing resource that hosts the component that is referenced by the component reference to which the responsibility reference is bound. If the responsibility reference is not bound to a component reference, the demand is ignored.
8.2.7 StartPoint

StartPoint is a path node that denotes the guarded beginning of scenario behaviour. See Figure 53/Z.151 and Figure 55/Z.151.

Attributes

· Inherits attributes from PathNode.
Relationships

· Inherits relationships from PathNode.
· Composition of Condition (0..1): A StartPoint may contain one precondition.

· Composition of Workload (0..1): A StartPoint may contain one work load.

· Association with InBinding (0..*): A StartPoint may have many in-bindings.

· Association with ScenarioDef (0..*) [not navigable]: A StartPoint may trigger scenario definitions.

Constraints

a. Inherits constraints from PathNode.

b. A StartPoint instance is the source PathNode of one and only one NodeConnection.

c. A StartPoint instance is the target PathNode of zero or one NodeConnection.

d. If a StartPoint instance is the target PathNode of one NodeConnection, the source PathNode of the NodeConnection is of type Connect.

b)
Concrete grammar

The symbol for StartPoint at the beginning of a UCM path is defined as a filled circle (() with the name of the start point (from superclass URNmodelElement) optionally displayed next to the symbol according to Label coordinates of the start point. The label of the ConcreteCondition contained by the Condition of the start point (e.g., C1) is also displayed in square brackets and italic font next to the symbol according to Label coordinates of the condition. If no label attribute is defined for the concrete condition, then the square brackets also do not need to be shown. The symbol of a start point is the same as the symbol of a WaitingPlace.
[image: image56.emf]StartPoint

…

[C1]

StartPoint

…

[C1]

Relationships

· Inherits relationships from PathNode.

Constraints

e. Inherits constraints from PathNode.

c)
Semantics

StartPoint denotes the beginning of scenario behaviour. The precondition of a start point expresses the conditions for which a scenario is defined. If the precondition is satisfied (true), then the scenario may proceed along the UCM path beginning at the start point. If the precondition is not satisfied (false), then the scenario cannot start.
Start points also play a role in a) in the hierarchical structuring of UCM specifications through InBindings as explained in section 8.3, b) UCM scenario definitions as explained in section 8.5, and c) the performance analysis of UCM specifications through Workloads as explained in section 8.6.
8.2.8 EndPoint

EndPoint is a path node that denotes the end of scenario behavior for which a postcondition may be defined. See Figure 53/Z.151 and Figure 55/Z.151
Attributes

· Inherits attributes from PathNode.
Relationships

· Inherits relationships from PathNode.
· Composition of Condition (0..1): An EndPoint may contain one postcondition.

· Association with OutBinding (0..*): An EndPoint may have many out-bindings.

· Association with ScenarioDef (0..*) [not navigable]: An EndPoint may be reached by scenario definitions.

Constraints

a. Inherits constraints from PathNode.

b. An EndPoint instance is the source PathNode of zero or one NodeConnection.
c. An EndPoint instance is the target PathNode of one and only one NodeConnection.
d. If an EndPoint instance is the source PathNode of one NodeConnection, the target PathNode of the NodeConnection is of type Connect.

b)
Concrete grammar

The symbol for EndPoint at the end of a UCM path is defined as a filled bar (I) with the name of the end point (from superclass URNmodelElement) optionally displayed next to the symbol according to Label coordinates of the end point. The label of the ConcreteCondition contained by the Condition of the end point (e.g., C1) is also displayed in square brackets and italic font next to the symbol according to Label coordinates of the condition. If no label attribute is defined for the concrete condition, then the square brackets also do not need to be shown.
[image: image57.emf]…

EndPoint

[C1]

…

EndPoint

[C1]

Relationships

· Inherits relationships from PathNode.

Constraints

e. Inherits constraints from PathNode.

c)
Semantics

EndPoint denotes the end of scenario behavior. The postcondition of an end point expresses the condition following successful execution of a given scenario. If the postcondition is satisfied (true), then the scenario executed successfully. If the postcondition is not satisfied (false), then the scenario did not execute successfully.
End points also play a role in a) in the hierarchical structuring of UCM specifications through OutBindings as explained in section 8.3 and b) UCM scenario definitions as explained in section 8.5.
8.2.9 OrFork

OrFork is a path node that represents a guarded choice point for alternative branches in scenario behavior. See Figure 53/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from PathNode.
Relationships

· Inherits relationships from PathNode.
Constraints

a. Inherits constraints from PathNode.

b. An OrFork instance is the source PathNode of one or more NodeConnections.

c. An OrFork instance is the target PathNode of one and only one NodeConnection.

b)
Concrete grammar

The symbol for OrFork on a UCM path is defined as a fork with one incoming branch and at least two outgoing branches. The name of the OR-fork (from superclass URNmodelElement) is optionally displayed next to the symbol according to Label coordinates of the OR-fork. The branch conditions of the OR-fork (e.g., C1, C2, C3) are shown as defined in the concrete syntax of NodeConnection.
[image: image58.emf]…

…

…

…

[C1]

[C2]

[C3]

OrFork

…

…

…

…

[C1]

[C2]

[C3]

OrFork

Relationships

· Inherits relationships from PathNode.

Constraints

d. Inherits constraints from PathNode.

c)
Semantics

OrFork represents a choice point in the UCM specification with at least two alternative, outgoing branches. Each alternative, outgoing branch (i.e., NodeConnection) has a Condition. When arriving at the OR-fork during traversal of the UCM path, the conditions are evaluated. If exactly one condition evaluates to true, the alternative branch with that condition is chosen and the traversal continues along that branch. If no condition or more than one condition evaluates to true, then the traversal stops and an error
is generated. If a condition is not specified for at least one
 alternative branch, the traversal also stops and an error is again generated.
8.2.10 OrJoin

OrJoin is a path node that represents a merge point for alternative or concurrent branches in scenario behavior. See Figure 53/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from PathNode.
Relationships

· Inherits relationships from PathNode.
Constraints

a. Inherits constraints from PathNode.

b. An OrJoin instance is the source PathNode of one and only one NodeConnection.

c. An OrJoin instance is the target PathNode of one or more NodeConnections.

b)
Concrete grammar

The symbol for OrJoin on a UCM path is defined as a merge of at least two branches into one branch. The name of the OR-join (from superclass URNmodelElement) is optionally displayed next to the symbol according to Label coordinates.
[image: image59.emf]…

…

……

OrJoin

…

…

……

OrJoin

Relationships

· Inherits relationships from PathNode.

Constraints

d. Inherits constraints from PathNode.

c)
Semantics

OrJoin represents a simple merge point of at least two branches without synchronization. The branches can be either alternative or concurrent branches. When an OR-join is reached during traversal of the UCM path, the traversal simply continues past the OR-join to the next node. If two concurrent branches arrive at an OR-join during the traversal, both will continue and the node past the OR-join will be executed twice.
8.2.11 AndFork

AndFork is a path node that represents the beginning of concurrent branches in scenario behavior. See Figure 53/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from PathNode.
Relationships

· Inherits relationships from PathNode.
Constraints

a. Inherits constraints from PathNode.

b. An AndFork instance is the source PathNode of one or more NodeConnections.

c. An AndFork instance is the target PathNode of one and only one NodeConnection.

b)
Concrete grammar

The symbol for AndFork on a UCM path is defined as a filled bar (I) with one incoming branch and at least two outgoing branches. The name of the AND-fork (from superclass URNmodelElement) is optionally displayed next to the symbol according to Label coordinates.
[image: image60.emf]…

…

…

…

AndFork

…

…

…

…

AndFork

Relationships

· Inherits relationships from PathNode.

Constraints

d. Inherits constraints from PathNode.

c)
Semantics

AndFork represents a concurrent branching point with at least two concurrent, outgoing branches. When an AND-fork is reached during traversal of the UCM path, the traversal simply continues in parallel past the AND-fork to the next node for each outgoing branch.
8.2.12 AndJoin

AndJoin is a path node that represents a synchronization point of alternative or concurrent paths in scenario behavior. See Figure 53/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from PathNode.
Relationships

· Inherits relationships from PathNode.
Constraints

a. Inherits constraints from PathNode.

b. An AndJoin instance is the source PathNode of one and only one NodeConnection.

c. An AndJoin instance is the target PathNode of one or more NodeConnections.

b)
Concrete grammar

The symbol for AndJoin on a UCM path is defined as a filled bar (I) with at least two incoming branches and one outgoing branch. The name of the AND-join (from superclass URNmodelElement) is optionally displayed next to the symbol according to Label coordinates.
[image: image61.emf]…

…

…

…

AndJoin

…

…

…

…

AndJoin

Relationships

· Inherits relationships from PathNode.

Constraints

d. Inherits constraints from PathNode.

c)
Semantics

AndJoin represents a merge point of at least two incoming branches with synchronization
. The incoming branches can be either alternative or concurrent branches. For each incoming branch, the AND-join maintains a counter. The counter for a branch is increased by one when the AND-join is reached along that branch during traversal of the UCM path. Traversal of the UCM path may continue past the AND-join only if the counter for each incoming branch of the AND-join is greater than zero. Before continuing on to the next path node, each counter is decreased by one. The behaviour of an AND-join is best described with the help of counters, but the usage of counters is not mandatory and the same effect may be achieved through other means.
8.2.13 EmptyPoint

EmptyPoint is a path node that is used to asynchronously connect two paths. See Figure 53/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from PathNode.
Relationships

· Inherits relationships from PathNode.
Constraints

a. Inherits constraints from PathNode.

b. An EmptyPoint instance is the source PathNode of one or two NodeConnection.

c. An EmptyPoint instance is the target PathNode of one and only one NodeConnection.

d. If an EmptyPoint instance is the source PathNode of two NodeConnections, the target PathNode of one and only one of the two NodeConnections is of type Connect.

b)
Concrete grammar

The symbol for EmptyPoint on a UCM path is defined as a small, empty circle ((). The name of the empty point (from superclass URNmodelElement) is optionally displayed next to the symbol according to Label coordinates.
[image: image62.emf]……

EmptyPoint

……

EmptyPoint

Relationships

· Inherits relationships from PathNode.

Constraints

e. Inherits constraints from PathNode.

c)
Semantics

EmptyPoint does not have any scenario semantics of its own but rather facilitates the asynchronous connection of two paths (see Connect). Consequently, the traversal of a UCM path simply passes through an empty point and immediately continues in parallel on to the path nodes following the empty point. Furthermore, an empty point bound to a ComponentRef does not carry any meaning. If, for example, a path crosses into a Component because only an empty point is bound to a ComponentRef that references the component, it cannot be concluded that the component takes part in the scenario behavior.
8.2.14 WaitingPlace

WaitingPlace is a path node that represents a point in scenario behavior where the continuation of the scenario depends on the fulfillment of a condition or the arrival of a trigger event (i.e., the arrival of a connected UCM path). A waiting place has a waitType further indicating its semantics. See Figure 53/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from PathNode.
· waitType (WaitKind): The type of waiting place. Default value is None.

Relationships

· Inherits relationships from PathNode.
· Uses WaitKind enumeration.
· WaitingPlace is a superclass of Timer.

Constraints

a. Inherits constraints from PathNode.

b. A WaitingPlace instance that is not a Timer instance is the source PathNode of one and only one NodeConnection.

c. A WaitingPlace instance is the target PathNode of one or two NodeConnections.

d. If a WaitingPlace instance is the target PathNode of two NodeConnections, the source PathNode of one and only one of the two NodeConnections is of type Connect.

b)
Concrete grammar

The symbol for WaitingPlace on a UCM path is defined as a filled circle (() with the name of the waiting place (from superclass URNmodelElement) optionally displayed next to the symbol according to Label coordinates. The symbol of a waiting place is the same as the symbol of a StartPoint. Waiting places are visualized the same way regardless of the value of waitType. For the concrete syntax of the Timer subclass of WaitingPlace, see section 8.2.15. See also Connect for further visualizations of waiting places.
[image: image63.emf]……

WaitingPlace

……

WaitingPlace

Relationships

· Inherits relationships from PathNode.

Constraints

e. Inherits constraints from PathNode.

c)
Semantics

WaitingPlace represents a location on a UCM path where the traversal of the path stops until a condition is satisfied or a trigger event arrives. The arrival of a trigger event is modeled with a second UCM path that is connected to the waiting place (see Connect). A trigger counter keeps track of the arrivals (see WaitKind for details). The condition of the waiting place is the Condition of the NodeConnection with the waiting place as its source.
Upon arrival at a waiting place via the waiting path (for a definition see Connect), the waiting counter of the waiting place is increased by one. The initial value of the waiting counter is zero.

The traversal of the waiting path is allowed to continue past the waiting place, if a) the condition evaluates to true or b) both the waiting counter and the trigger counter are greater than zero. When continuing past the waiting place, the waiting counter and the trigger counter are decreased by one. If any counter is already zero, it is not decreased any further.
If the condition evaluates to false and the trigger event never arrives, the traversal of the UCM path stops and an error is generated.

The behaviour of a waiting place is best described with the help of counters, but the usage of counters is not mandatory and the same effect may be achieved through other means.
8.2.15 Timer

Timer is a specialization of the WaitingPlace path node where the continuation of the scenario depends on the fulfillment of conditions, the arrival of a trigger event (i.e., the arrival of a connected UCM path), or the occurrence of a timeout. See Figure 53/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from WaitingPlace.
Relationships

· Inherits relationships from WaitingPlace.
· Association with NodeConnection (0..1): A Timer may have one node connection representing its timeout path.

Constraints

a. Inherits constraints from WaitingPlace.

b. A Timer instance is the source PathNode of one or two NodeConnections.
b)
Concrete grammar

The symbol for Timer on a UCM path is defined as a clock symbol (() with the name of the timer (from superclass URNmodelElement) optionally displayed next to the symbol according to Label coordinates of the timer. The branch conditions of the timer (e.g., C1, C2) are shown as defined in the concrete syntax of NodeConnection. The optional timeout path of a timer is rendered as a zig-zag path. See also Connect for further visualizations of timers.
[image: image64.emf][C1]

……

Timer

…

[C2]

[C1]

……

Timer

…

[C2]

Relationships

· Inherits relationships from WaitingPlace.

c)
Semantics

The semantics of a Timer overrides the semantics defined for WaitingPlace. A timer represents a location on a UCM path where the traversal of the path stops until conditions are satisfied or a trigger event arrives. The arrival of a trigger event is modeled with a second UCM path that is connected to the waiting place (see Connect). A trigger counter keeps track of the arrivals (see WaitKind for details). The conditions of the waiting place are the Conditions of the NodeConnection with the timer as its source. There is one condition for the timeout path and one condition for the regular path.

Upon arrival at a timer via the waiting path (for a definition see Connect), the waiting counter of the timer is increased by one. The initial value of the waiting counter is zero.

The traversal of the waiting path is allowed to continue past the timer along the regular path, if a) the condition of the regular path evaluates to true or b) the condition of the regular path evaluates to false, the condition of the timeout path evaluates to false, and both the waiting counter and the trigger counter are greater than zero.

The traversal of the waiting path is allowed to continue past the timer along the timeout path, if a) the condition of the regular path evaluates to false and the condition of the timeout path evaluates to true or b) the condition of the regular path evaluates to false, the condition of the timeout path evaluates to false, the waiting counter is greater than zero, and the trigger counter is zero.

Table 1/Z.151 gives an overview of the decision process for selecting either the regular path (RP) or the timeout path (TOP) for continuation of the traversal of the UCM path based on the condition for the regular path (CRP), the condition for the timeout path (CTOP), and the trigger counter (TC). The overview assumes that the traversal of the UCM path has already reached the timer via the waiting path (i.e., waiting counter > 0). Table 1/Z.151 is read row by row as follows. For example, the last row says that if the CRP evaluates to false (first column) and the CTP evaluates to false (second column), then the timeout path (TP) is taken if TC equals zero (third column) and the regular path (RP) is taken if TC is greater than zero (fourth column).
Table 1/Z.151 Overview of timer semantics

	CRP
	CTOP
	TC = 0
	TC > 0

	True
	True
	RP
	RP

	True
	False
	RP
	RP

	False
	True
	TOP
	TOP

	False
	False
	TOP
	RP

When continuing past the timer, the waiting counter and the trigger counter are decreased by one. If any counter is already zero, it is not decreased any further.
The behaviour of a timer is best described with the help of counters, but the usage of counters is not mandatory and the same effect may be achieved through other means.
8.2.16 WaitKind

A waiting place can be either undefined (None), Transient, or Persistent. See Figure 53/Z.151.

a)
Abstract grammar

Attributes

· None (enumeration metaclass).

Relationships

· Used by WaitingPlace.

Constraints

None.

b)
Concrete grammar

None (enumeration metaclass).

c)
Semantics

WaitKind defines how a trigger path in the case of a WaitingPlace instance that is not a Timer instance and how a release path in the case of a Timer instance are handled (for a definition of trigger path, release path, and waiting path see Connect).

If the wait kind is None, the behaviour is undefined
. If the wait kind is Transient or Persistent, a trigger counter keeps track of how often a scenario has arrived at the waiting place via the trigger or release path. The initial value of the trigger counter is zero.

For transient waiting places, the trigger counter is set to one upon arrival at the waiting place via the trigger or release path, if the waiting counter for the waiting path of a waiting place is greater than zero (see WaitingPlace and Timer). In this case, the trigger counter is never greater than one, thus modeling that the arrival of a trigger is only taken into account when the scenario is expecting the trigger (i.e., the scenario is already waiting at the waiting place). Otherwise, the trigger is thrown away. For persistent waiting places, the trigger counter is increased by one upon arrival at the waiting place via the trigger or release path. In this case, all triggers are taken into account.
When continuing past the waiting place, the trigger counter behaves the same way for transient and persistent waiting places (for more details see WaitingPlace and Timer).
The behaviour of trigger and release paths is best described with the help of counters, but the usage of counters is not mandatory and the same effect may be achieved through other means.
8.2.17 Connect

Connect is a path node that allows exactly two UCM paths to be connected with each other either synchronously (i.e., in sequence by connecting an EndPoint to another path) or asynchronously (i.e., in passing by connecting an EmptyPoint to another path). See Figure 53/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from PathNode.
Relationships

· Inherits relationships from PathNode.
Constraints

a. Inherits constraints from PathNode.

b. A Connect instance is the source PathNode of one and only one NodeConnection.

c. A Connect instance is the target PathNode of one and only one NodeConnection.
d. If a Connect instance is the source PathNode of a NodeConnection, the target PathNode of the NodeConnections is of type WaitingPlace or StartPoint.

e. If a Connect instance is the target PathNode of a NodeConnection, the source PathNode of the NodeConnections is of type EndPoint or EmptyPoint.

b)
Concrete grammar

A Connect has no concrete syntax as it is not visualized directly. A connect, however, influences the visualization of other path nodes that are linked together by a connect. The following examples illustrate all six possible combinations. If an EmptyPoint is used to connect two paths together (see examples on left side), the symbol for the empty point is not rendered.
[image: image65.emf]…

EndPoint

[CE]

StartPoint

…

[CS]

…

EndPoint[CE]

……

WaitingPlace

[CTO]

……

Timer

…

[CT]

[CTO]

……

Timer

…

[CT]

EndPoint

[CE]

…

StartPoint

…

[CS]

……

……

WaitingPlace

……

……

…

EndPoint

[CE]

StartPoint

…

[CS]

…

EndPoint

[CE]

…

EndPoint

[CE]

StartPoint

…

[CS]

StartPoint

…

[CS]

…

EndPoint[CE]

……

WaitingPlace

…

EndPoint[CE]

…

EndPoint[CE]

……

WaitingPlace

……

WaitingPlace

[CTO]

……

Timer

…

[CT]

[CTO]

……

Timer

…

[CT]

[CTO]

……

Timer

…

[CT]

EndPoint

[CE]

…

[CTO]

……

Timer

…

[CT]

[CTO]

……

Timer

…

[CT]

EndPoint

[CE]

…

EndPoint

[CE]

…

StartPoint

…

[CS]

……

StartPoint

…

[CS]

StartPoint

…

[CS]

…… ……

……

WaitingPlace

……

……

WaitingPlace

……

WaitingPlace

…… ……

…… ……

The second UCM path that either touches a start point or waiting place or that ends with an end point connected to a start point or waiting place in the above examples is called a trigger path. The second UCM path that either touches a timer or that ends with an end point connected to a timer in the above examples is called a release path. The path segment before a waiting place or timer is called the waiting path.
Relationships

· Inherits relationships from PathNode.

Constraints

f. Inherits constraints from PathNode.

g. A Connect instance does not have a Label.

h. A Connect instance does not have a Position.

c)
Semantics

Connect does not have any scenario semantics of its own but rather facilitates the synchronous and asynchronous connection of two paths. Consequently, the traversal of a UCM path simply passes through a connect and immediately continues on to the path node following the connect. An asynchronous connection involves an EmptyPoint, while a synchronous connection involves an EndPoint. In an asynchronous connection the traversal of the UCM path continues along the trigger or release path regardless of what happens at the connected StartPoint, WaitingPlace, or Timer. In a synchronous connection, the traversal of the trigger or release path comes to an end at the end point. Only the traversal of the waiting path continues.
All possible combinations of NodeConnections with connects are summarized in Table 2/Z.151.

Table 2/Z.151 Combinations of node connections with connects

	First Node Connection
	Second Node Connection

	Source Node
	Target Node
	Source Node
	Target Node

	Empty Point
	Connect
	Same Connect
	Start Point

	Empty Point
	Connect
	Same Connect
	Waiting Place

	Empty Point
	Connect
	Same Connect
	Timer

	End Point
	Connect
	Same Connect
	Start Point

	End Point
	Connect
	Same Connect
	Waiting Place

	End Point
	Connect
	Same Connect
	Timer

In the first three cases depicted in Table 2/Z.151, a second node connection exists with the empty point as the source node. This node connection models the continuation of the trigger or release path.
8.3 UCM stubs and plug-ins
Stubs and their PluginBindings enable hierarchical structuring of UCM specifications. A PluginBinding binds (i.e., connects) model elements on the parent map that contains the stub with models elements on a plug-in map. PluginBindings specify ComponentBindings (covered in section 8.4), InBindings, and OutBindings. An InBinding binds the in-path of a stub with a start point on the plug-in map, while an OutBinding binds the out-path of a stub with an end point on the plug-in map. See Figure 55/Z.151.

[image: image66.emf]Stub

dynamic : Boolean = false

synchronizing : Boolean = false

blocking : Boolean = false

UCMmap

singleton : Boolean = true

InBinding

OutBinding

PluginBinding

id : String

probability : Nat = 100

replicationFactor : String = "1"

0..*

1

bindings0..*

stub

1

0..*

1

parentStub

0..*

plugin

1

0..*

1

in

0..*

binding

1

0..*

1

out

0..*

binding

1

EndPoint

0..*

1

outBindings0..*

endPoint

1

StartPoint

0..*

1

inBindings

0..*

startPoint1

NodeConnection

probability : Nat = 100

1

0..*

stubEntry

1

inBindings

0..*

1

0..*

stubExit

1

outBindings

0..*

Condition

expression : String

0..1

0..1

pluginBinding

0..1

precondition

0..1

0..1

0..1

endPoint

0..1

postcondition

0..1

0..1

0..1

startPoint

0..1

precondition

0..1

0..1

0..1

nodeConnection

0..1

condition

0..1

Figure 54/Z.151 Abstract grammar: UCM stubs and plug-ins

8.3.1 Stub

Stub is a path node that indicates the presence of hierarchically structured UCM maps. See Figure 53/Z.151 and Figure 55/Z.151.

a)
Abstract grammar

Attributes

· Inherits attributes from PathNode.
· dynamic (Boolean): Indicates whether the stub is dynamic (true), i.e. can have more than one plug-in map, or static (false), i.e. can have at the most one plug-in map. Default value is false.
· synchronizing (Boolean): Indicates whether the stub synchronizes its plug-in maps (true) or not (false). Default value is false.
· blocking (Boolean): Indicates whether the stub allows its plug-in maps to be visited more than once at the same time (false) or whether the stub blocks an additional visit (true). Default value is false.
Relationships

· Inherits relationships from PathNode.
· Composition of PluginBinding (0..*): A Stub may contain plug-in bindings.

Constraints

a. Inherits constraints from PathNode.
b. If synchronizing is true, then dynamic is true.

c. If blocking is true, then synchronizing is true.
d. If static is true, the number of PluginBindings contained by the Stub instance is zero or one.

e. If static is true, the precondition of PluginBinding of the Stub instance is true.
f. If static is true, the replicationFactor of PluginBinding of the Stub instance is one.
g. A Stub instance is the source PathNode of zero or more NodeConnections.

h. A Stub instance is the target PathNode of zero or more NodeConnections.
b)
Concrete grammar

The basic symbol for Stub on a UCM path is defined as a diamond symbol (() with the name of the stub (from superclass URNmodelElement) optionally displayed next to the symbol according to Label coordinates of the stub. For synchronizing stubs, the synchronization thresholds (the conditions on the out-paths of the stub; e.g., ST) are shown as defined in the concrete syntax of NodeConnection.
[image: image67.emf]……

StaticStub

…………

StaticStub

 [image: image68.emf]……

DynamicStub

…………

DynamicStub

 [image: image69.emf]……

S

SynchronizingStub

[ST]

……

S

……

S

SynchronizingStub

[ST]

 [image: image70.emf]…

Stub

…

Stub

…

Stub

……

Stub

…

Stub

……

Stub

 [image: image71.emf]…

…

……

S

Stub

[ST2]

[ST1]

[ST3]

…

…

…

…

……

S

Stub

[ST2]

[ST1]

[ST3]

…

…

A static stub is rendered with a solid outline, a dyamic stub is rendered with a dashed outline, and a synchronizing stub is rendered with the letter S inside the stub symbol. A blocking stub does not have its own concrete syntax and uses the same as the synchronizing stub. Furthermore, any kind of stub may have zero or many in-paths and out-paths as shown in the last three of the above examples.
The incoming node connection of the stub is called in-path, while the outgoing node connection is called out-path,

Relationships

· Inherits relationships from PathNode.

Constraints

i. Inherits constraints from PathNode.

c)
Semantics

Stub represents hierarchical structuring of UCM specifications through containment of plug-in maps. When the traversal of a UCM path reaches a stub, the traversal continues with the plug-in maps of the stubs. When the traversal reaches an end point on a plug-in map, the traversal returns to the map of the stub (i.e., the parent map) and proceeds past the stub. The exact binding of the parent map to the plug-in map is specified with the help of PluginBindings, ComponentBindings (covered in section 8.4), InBindings, and OutBindings
Several types of stubs exist as explained in the following paragraphs.

· A static stub has at the most one plug-in map that cannot be replicated (see PluginBinding) and is always selected (see PluginBinding) when the traversal of the UCM path reaches the static stub.
· A dynamic stub may have many plug-in maps that can be replicated and are selected based on the preconditions of their PluginBindings when the traversal of the UCM path reaches the static stub. The selected plug-in maps of the stub are executed in parallel.

· A synchronizing stub is a dynamic stub that in addition synchronizes its plug-in maps before the traversal of the UCM path is allowed to continue past the stub. By default, a synchronizing stub expects as many plug-in maps as were selected to arrive at an out-path before the scenario is continued (i.e., not necessarily all plug-in maps defined for the stub). A synchronization threshold (the Conditions on the NodeConnections representing the out-paths of the stub) may override the default. The synchroniziation threshold is an Integer expression greater than zero and can be defined for each out-path of a stub. The synchronization threshold may be greater than the number of plug-in maps defined for the stub, because a single plug-in map may arrive at a stub’s out-path multiple times due to loops. All plug-in maps that arrive at a stub’s out-path after its synchronization threshold has been reached are ignored.

· Finally, a blocking stub is a synchronizing stub that does not allow its plug-in maps to be visited more than once at the same time.
A visit in the context of synchronzing and blocking stubs is defined by how often an in-path of the stub has been traversed. If an in-path is traversed the first time, then it is the first visit of the stub. If the same in-path is traversed the nth time, then it is the nth visit of the stub. If another in-path of the stub is traversed for the first time, then it is the first visit of the stub. Plug-in maps that have been instantiated because of a visit are said to belong to the visit.
Plug-in maps that are plugged into a stub are instantiated when the stub is reached the first time during the traversal of a UCM path. The fact that stubs are often used to restructure a complicated map implies that a stub instance must contain not more than one instance of a plug-in map at any time (with obviously the exception of replicated plug-in maps). This also applies to a stub that is used in a loop. The “not more than one map instance per stub instance” rule ensures the equivalence of a plug-in maps-based UCM specification with its flattened representation that uses only one single map. Synchronizing stubs are an exception for this rule and are discussed later on in this section.
Since maps can be designated as singleton maps, there are three cases a modeller may want to capture as illustrated in the example below.

· Map G is a singleton and therefore the same instance of this map is used by the stubs on Map A, Map B, and Map C. The same applies to Map H and the stubs on Map D, Map E, and Map F.

· Map I, on the other hand, is not a singleton. Therefore, the stubs on Map G and Map H use different instances of Map I.
· Finally, a group of stubs may want to use the same instance of a plug-in map. This is achieved with an intermediary layer of singleton maps. For example, the group of stubs on Map A, Map B, and Map C uses the same instance of Map I but the group of stubs on Map D, Map E, and Map F uses a different instance of Map I.

[image: image72.emf]Map A

Map B

Map CMap D

Map E

Map F

Map G Map H

Map I

uses 1

st

instance uses 2

nd

instance

singleton singleton

R

Map AMap A

Map BMap B

Map CMap CMap DMap D

Map EMap E

Map FMap F

Map GMap G Map HMap H

Map IMap I

uses 1

st

instance uses 2

nd

instance

singleton singleton

RR

The flattening of a static stub and its plug-in map is quite straightforward. The in-paths of the stub are merged with the start points on the plug-in map according to the specified InBindings. The out-paths of the stub are merged with the end points on the plug-in map according to the specified OutBindings. The structural specifications on the parent map are merged with the structural specifications on the plug-in map according to the specified ComponentBindings. Structural specifications are treated the same way as for all types of stubs.
The semantics for a dynamic stub is similar to static stubs in that a dynamic stub may contain only one instance of each of its plug-in maps at a time. The semantics differs of course as the purpose of a dynamic stub is to model AND-forks and OR-joins in addition to simple hierarchical structuring (see example below). Each in-path is equivalent to an AND-fork that is connected to the flattened plug-in maps according to the specified InBindings. Analogously, each out-path corresponds to an OR-join connected to the flattened plug-in maps based on the specified OutBindings. Plug-in bindings are indicated in the example below by labelling in-paths, out-paths, start points, and end points with iN and oN. Preconditions of plug-in maps are indicated in square brackets next to the name of the plug-in map.
[image: image73.emf]Map P2 [C2]

i1

i2

Map P3 [C3]

i2

i1

i2

o1

R2

Map A

R3

Map P1 [C1]

i1

R1

o1

o1

o1

[C2]

[C1]

[C3]

[C3]

i2

i1

R2

R3

R1

o1

Map P2 [C2]

i1

i2

Map P3 [C3]

i2

i1

i2

o1

R2

Map A

R3

Map P1 [C1]

i1

R1

o1

o1

o1

[C2]

[C1]

[C3]

[C3]

i2

i1

R2

R3

R1

o1

Note that the semantics of an AND-fork in a flattened UCM model corresponds to the semantics of stubs with guarded plug-in maps and not the semantics of regular AND-forks in non-flattened models, i.e., guards on concurrent branches of an AND-fork are allowed. The URN metamodel allows for these guards even though they are not used in standard URN models.

The semantics for a synchronizing stub in terms of instances of maps, however, is slightly different than for static and dynamic stubs, because the plug-in maps bound to a synchronizing stub have to act as one group. If an in-path of the synchronizing stub is visited for a second time, a second group of plug-in maps must be created. Therefore, synchronizing stubs can contain more than one instance of a plug-in map at the same time. This behavior, however, is equivalent to one instance with tokens flowing between AND-forks and AND-joins that can only synchronize if they were created by an AND-fork during the same visit. The synchronizing stub is therefore still conceptually equivalent to its flattened counterpart (see example below) with each in-path converted to an AND-fork and each out-path converted to an AND-join. The connections of the AND-fork and AND-join to the flattened plug-in maps are again based on the specified InBindings and OutBindings.

 [image: image74.emf]S

Map P2 [C2]

i1

i2

Map P3 [C1 || C2]

i2

i1

i2

o1

R2

Map A

R3

Map P1 [C1]

i1

R1

[2]

[C2]

[C1]

[C1 || C2]

[C1 || C2]

i2

i1

R2

R3

R1

o1

[2]

o1

o1

o1

S

Map P2 [C2]

i1

i2

Map P3 [C1 || C2]

i2

i1

i2

o1

R2

Map A

R3

Map P1 [C1]

i1

R1

[2]

[C2]

[C1]

[C1 || C2]

[C1 || C2]

i2

i1

R2

R3

R1

o1

[2]

[C2]

[C1]

[C1 || C2]

[C1 || C2]

i2

i1

R2

R3

R1

o1

[2]

o1

o1

o1

Note that the semantics of AND-forks in flattened UCM models is the same as for dynamic stubs explained earlier. The semantics of AND-joins corresponds to synchronizing stubs and not the regular AND-joins in non-flattened models. Thus, they allow the specification synchronization thresholds. Again, the URN metamodel already allows for these thresholds even though they are not used in standard URN models.

If a synchronizing stub has only one in-path, then the creation of multiple plug-in map instances is straightforward. This becomes more complex when multiple in-paths are present.

If an in-path is visited for the first time after a different in-path was visited the first time, then no new plug-in map instances need to be created, because both traversals belong to the same visit. See the example below and the first, second, and third column of Table 3/Z.151 for an example. Given a synchronizing stub with three in-paths i1, i2, and i3, two plug-in maps bound to the stub as indicated in the example below, and a traversal order of the in-paths (i1: 1st, 4th, 5th; i2: 2nd, 6th; i3: 3rd, 7th, 8th, 9th), there will be four visits where instances of both plug-in maps P1 and P2 are created. The first instances of P1 and P2 are created at the first traversal of in-path i1. The second and third traversals do not cause new instances to be created because these in-paths have not yet been used for the first instances, and hence are part of the same visit. The fourth traversal creates the second set of instances (second visit) because in-path i1 is traversed for the second time. The fifth traversal creates the third set of instances because in-path i1 is again traversed. The sixth and seventh traversals use the instances of the plug-in maps that belong to the second visit because the events go to the longest-waiting instance of a plug-in map. The eighth traversal uses the third set of instances. Finally, the ninth traversal causes the fourth set of instances to be created because in-path i3 is traversed for the fourth time. Note that the traversal of in-paths is important for the creation of plug-in map instances but not the traversal of start points on the plug-in map (e.g., P1’s start point is traversed five times because in-paths i1 and i2 are both bound to the start point). Furthermore, if a replication factor is defined for a plug-in map, then not one instance of the plug-in map is created each time but as many as specified by the replication factor.

Table 3/Z.151 Instances and Synchronizing Stubs

	#
	In-path
	Resulting Action
{specified synchronization threshold}
	Resulting Action
{default synchronization threshold}

	1
	i1
	create 1st P1 and 1st P2;
continue with i1 on 1st P1
	create 1st P1 and 1st P2;
set synchronization threshold to 2;
continue with i1 on 1st P1

	2
	i2
	continue with i2 on 1st P1 (for the second time on that instance) and 1st P2
	continue with i2 on 1st P1 (for the second time on that instance) and 1st P2
{the synchronization threshold is reached and traversal continues past the stub}

	3
	i3
	continue with i3 on 1st P2
{the synchronization threshold is reached and traversal continues past the stub}
	continue with i3 on 1st P2
{ignore arrival at out-path}

	4
	i1
	create 2nd P1 and 2nd P2;
continue with i1 on 2nd P1
	create 2nd P1 and 2nd P2;
set synchronization threshold to 2;
continue with i1 on 2nd P1

	5
	i1
	create 3rd P1 and 3rd P2;
continue with i1 on 3rd P1
	create 3rd P1 and 3rd P2;
set synchronization threshold to 2;
continue with i1 on 3rd P1

	6
	i2
	continue with i2 on 2nd P1 (for the second time on that instance) and 2nd P2
	continue with i2 on 2nd P1 (for the second time on that instance) and 2nd P2
{the synchronization threshold is reached and traversal continues past the stub}

	7
	i3
	continue with i3 on 2nd P2
{the synchronization threshold is reached and traversal continues past the stub}
	continue with i3 on 2nd P2
{ignore arrival at out-path}

	8
	i3
	continue with i3 on 3rd P2
	continue with i3 on 3rd P2

	9
	i3
	create 4th P1 and 4th P2;
continue with i3 on 4th P2
	create 4th P1 and 4th P2;
set synchronization threshold to 2;
continue with i3 on 4th P2

If the synchronization threshold is not specified in the example in Figure 9, then the default behavior stipulates that as many plug-in map instances must arrive at the out-path as are executed in parallel before the traversal is allowed to continue. The fourth column in Table 3/Z.151 explains the behavior of the synchronization stub in this case assuming that both plug-in maps are selected. Note that the synchronization threshold is always specified upon first arrival at a stub during each visit. Subsequent arrivals during the same visit along other in-paths do not change the synchronization threshold for that visit, even if the number of plug-in map instances that are being traversed changes.

[image: image75.emf]S

Map P1

Map A

i1

i2

i3

Map P2

i1, i2

i2

i3

[3]

S

Map P1Map P1

Map A

i1

i2

i3

Map P2Map P2

i1, i2

i2

i3

[3]

8.3.2 PluginBinding

PluginBinding defines the binding (i.e., connection) of behavioral and structural specifications on a parent map to behavioral and structural specifications on a plug-in map with the help of InBindings, OutBindings, and ComponentBindings. A plug-in binding has a precondition that defines when the plug-in map is to be selected. See Figure 55/Z.151 and Figure 56/Z.151.
a)
Abstract grammar

Attributes

· id (String): The identifier of the plug-in binding.

· probability (Nat): The probability with which the plug-in map is selected in the UCM specification. Default value is 100.

· replicationFactor (String): The replication factor is an Integer expression that indicates how many instances of the plug-in map are used. Default value is one.
Relationships

· Association with UCMmap (1): A PluginBinding instance has one plug-in map.

· Contained by Stub (1): A PluginBinding instance is contained in one stub.

· Composition of Condition (0..1): A PluginBinding instance may contain one precondition.

· Composition of InBinding (0..*): A PluginBinding instance may contain in-bindings.

· Composition of OutBinding (0..*): A PluginBinding instance may contain out-bindings.

· Composition of ComponentBinding (0..*): A PluginBinding instance may contain component bindings.

Constraints

a. id must be unique within the URN specification.

b. probability (0 and probability (100.
c. The replicationFactor must evaluate to a positive Integer value (replicationFactor > 0).
d. The replicationFactor must be well-formed
 as defined in section 9 – Data language.

e. The UCMmap instance of a PluginBinding instance is the same instance as the UCMmap instances that contain the StartPoints that belong to the InBinding of the PluginBinding instance.

f. The UCMmap instance of a PluginBinding instance is the same instance as the UCMmap instances that contain the EndPoints that belong to the OutBinding of the PluginBinding instance.

g. The UCMmap instance of the Stub instance of a PluginBinding instance is the same instance as the UCMmap instances that contain the NodeConnections that belong to the InBinding of the PluginBinding instance.

h. The UCMmap instance of the Stub instance of a PluginBinding instance is the same instance as the UCMmap instances that contain the NodeConnections that belong to the OutBinding of the PluginBinding instance.

i. @@@parent and plug-in map the same for all bindings@@@there are more similar to the above
b)
Concrete grammar
None.

c)
Semantics

@@@TBD. @@@cover replication for various stub types here: Furthermore, a replication factor can be defined for each plug-in map, specifying how many instances of the plug-in map are to be executed in parallel. Dy+sy replicated maps are conceptually the same as copying one map many times and plugging it into the same stub @@@cover condition
8.3.3 InBinding

@@@TBD

a)
Abstract grammar

Attributes

None.

Relationships

· Contained by PluginBinding (1): An InBinding instance is contained in one plug-in binding.

· Association with NodeConnection (1): An InBinding consists of one node connection that represents an in-path of a stub.

· Association with StartPoint (1): An InBinding consists of one start point.

Constraints

a. @@@

b)
Concrete grammar
None.

c)
Semantics

@@@TBD.

8.3.4 OutBinding

@@@TBD

a)
Abstract grammar

Attributes

None.

Relationships

· Contained by PluginBinding (1): An OutBinding instance is contained in one plug-in binding.

· Association with NodeConnection (1): An OutBinding consists of one node connection that represents the out-path of a stub.

· Association with EndPoint (1): An OutBinding consists of one end point.

Constraints

a. @@@

b)
Concrete grammar
None.

c)
Semantics

@@@TBD.

8.4 UCM components

@@@TBD.

[image: image76.emf]ComponentType

PathNode

Component

kind : ComponentKind

protected : Boolean = false

context : Boolean = false

0..*

0..1

includedComponent

0..*

includingComponent

0..1

0..*

0..1

instances

0..*

type

0..1

UCMmap

ComponentRef

0..*0..1

children

0..*

parent

0..1

0..1

0..*

contRef

0..1

nodes

0..*

1

0..*

compDef

1

compRefs

0..*

1

0..*

diagram

1

contRefs

0..*

PluginBinding

ComponentBinding

0..*

1

parentBindings

0..*

parentComponent

1

0..*

1

pluginBindings

0..*

pluginComponent

1

1

0..*

binding

1

components

0..*

ComponentKind

Team

Object

Process

Agent

Actor

Other

<<enumeration>>

Figure 55/Z.151 Abstract grammar: UCM components

8.4.1 Component

A component is a generic and abstract entity that can represent software entities (e.g. objects, processes, databases, or servers) as well as non-software entities (e.g. actors or hardware) [Z.150, section 3.3].

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
· kind (ComponentKind): @@@.

· protected (Boolean): @@@.

· context (Boolean): @@@.

Relationships

· Inherits relationships from UCMmodelElement.
· Contained by UCMspec (1): Component instances are contained in the UCM specification (see Figure 51/Z.151).

· Association with ComponentType (0..1): A Component may have a component type.

· Association with Component (includingComponent, 0..1): A Component may be included by one component.

· Association with Component (includedComponents, 0..*): A Component may include components.

· Association with ComponentRef (0..*): A Component may be referenced by component references.

· Association with ProcessingResource (0..1): A Component may have one processing resource.

· Association with PassiveResource (0..1): A Component may have one passive resource.

· Uses ComponentKind enumeration.
Constraints

a. Inherits constraints from UCMmodelElement.

b. Any two Component instances cannot share the same name inside a URN specification.

c. The name of a Component instance cannot be an empty String.
d. @@@cannot contain itself

b)
Concrete grammar
Component has no concrete syntax. However, it may contain additional information in an instance of @@@ as shown in @@@.

Relationships

· Composition of @@@ (0..1): A Component may have one concrete style.

c)
Semantics

@@@TBD.

8.4.2 ComponentType

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
Relationships

· Inherits relationships from UCMmodelElement.
· Contained by UCMspec (1): ComponentType instances are contained in the UCM specification (see Figure 51/Z.151).

· Association with Component (0..*): A ComponentType may be assigned to components.

Constraints

a. Inherits constraints from UCMmodelElement.

b)
Concrete grammar

Relationships

· Inherits relationships from UCMmodelElement.

c)
Semantics

@@@TBD.

8.4.3 ComponentKind

A component can be either undefined (OTHER), a team (TEAM), an object (OBJECT), a process (PROCESS), an agent (AGENT), or an actor (ACTOR). See Figure 56/Z.151.

a)
Abstract grammar

Attributes

· None (enumeration metaclass).

Relationships

· Used by Component.

Constraints

None.

b)
Concrete grammar

None (enumeration metaclass).

c)
Semantics

@@@TBD.
8.4.4 ComponentRef

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
Relationships

· Inherits relationships from UCMmodelElement.
· Contained by UCMmap (1): A ComponentRef instance is contained in one UCM map.

· Association with PathNode (0..*): A ComponentRef may contain many path nodes.

· Association with Component (1): A ComponentRef references one component.

· Association with ComponentBinding (parentBindings, 0..*): A ComponentRef may be the parent component in component bindings.

· Association with ComponentBinding (pluginBindings, 0..*): A ComponentRef may be the component on the plug-in map in component bindings.

· Association with ComponentRef (parent, 0..1): A ComponentRef may be included by one component reference.

· Association with ComponentRef (children, 0..*): A ComponentRef may include component references.

Constraints

a. Inherits constraints from UCMmodelElement.

b. The name of a ComponentRef instance must be the same as the name of its associated Component instance.

c. @@@The UCMmap instance that contains the PathNode instance must be the same as the UCMmap instance that contains NodeConnection instances associated as pred.

d. @@@The UCMmap instance that contains the PathNode instance must be the same as the UCMmap instance that contains NodeConnection instances associated as succ.

e. @@@If the PathNode instance is included in one ComponentRef instance, then the UCMmap instance that contains this PathNode instance must be the same as the UCMmap instance that contains the ComponentRef instance.
b)
Concrete grammar

@@@TBD.
The coordinate conventions of section 5.3.2 apply. The top-left corner of the ComponentRef instance is indicated by its Position (x, y) and the bottom-right corner by its Position and Size (x+width, y+height). The bottom-left corner of the Label is relative to the Position (x-deltaX, y-deltaY). See Figure 57/Z.151 for an illustration of these layout principles. The same layout principles apply also to the alternative presentation of ActorRef instances.
[image: image77.emf]X axis

Y axis

(0,0)

x

y

width

height

TheLabel

deltaX

deltaY

Figure 56/Z.151 Layout: Position, size, and label for ComponentRef and of ActorRef
Relationships

· Inherits relationships from UCMmodelElement.

· Composition of Label (0..1): A ComponentRef may have one label.

· Composition of Size (0..1): A ComponentRef may have one size.

· Composition of Position (0..1): A ComponentRef may have one position.

Constraints

f. A ComponentRef instance must have one Label.
g. A ComponentRef instance must have one Size.
h. A ComponentRef instance must have one Position.
c)
Semantics

@@@TBD.

8.4.5 ComponentBinding

@@@TBD

a)
Abstract grammar

Attributes

· @@@.
Relationships

· Contained by PluginBinding (1): A ComponentBinding instance is contained in one plug-in binding.

· Association with ComponentRef (parentComponent, 1): A ComponentBinding consists of one component reference on the parent map.

· Association with ComponentRef (pluginComponent, 1): A ComponentBinding consists of one component reference on the plug-in map.

Constraints

a. @@@

b)
Concrete grammar
@@@

c)
Semantics

@@@TBD.

8.5 UCM scenario definitions

@@@TBD

[image: image78.emf]EnumerationType

values : String

Variable

type : DatatypeKind = Boolean

0..1

0..*

enumerationType

0..1

instances

0..*

ScenarioGroup

Condition

expression : String

Initialization

value : String

1

0..*

variable

1

initializations

0..*

StartPointEndPoint

ScenarioDef

1

0..*

group

1

scenarios

0..*

0..*

0..*

parentScenarios

0..*

includedScenarios

0..*

0..*

0..1

preconditions

0..*

scenarioDefPre

0..1

0..*

0..1

postconditions

0..*

scenarioDefPost

0..1

0..*

1

initializations

0..*

scenarioDef

1

0..*

0..*

startPoints

0..*

scenarioDefs

0..*

0..*

0..*

endPoints

0..*

scenarioDefs

0..*

DatatypeKind

Boolean

Integer

Enumeration

<<enumeration>>

Figure 57/Z.151 Abstract grammar: UCM scenario definitions

8.5.1 ScenarioGroup

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
Relationships

· Inherits relationships from UCMmodelElement.
· Contained by UCMspec (1): ScenarioGroup instances are contained in the UCM specification (see Figure 51/Z.151).

· Composition of ScenarioDef (0..*): A ScenarioGroup may contain scenario definitions.

Constraints

a. Inherits constraints from UCMmodelElement.

b)
Concrete grammar

Relationships

· Inherits relationships from UCMmodelElement.

c)
Semantics

@@@TBD.

8.5.2 ScenarioDef

A scenario is a partial description of system usage defined as a set of partially-ordered responsibilities a system performs to transform inputs to outputs while satisfying preconditions and postconditions. [Z.150, section 3.21]

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
Relationships

· Inherits relationships from UCMmodelElement.
· Contained by ScenarioGroup (1): A ScenarioDef instance is contained in one scenario group.

· Composition of Condition (preconditions, 0..*): A ScenarioDef may contain preconditions.

· Composition of Condition (postconditions, 0..*): A ScenarioDef may contain postconditions.

· Composition of Initialization (0..*): A ScenarioDef may contain variable initializations.

· Association with ScenarioDef (parentScenario, 0..*): A ScenarioDef may be included by scenario definitions.

· Association with ScenarioDef (includedScenario, 0..*): A ScenarioDef may include scenario definitions.

· Association with StartPoint (0..*): A ScenarioDef may define start points to be triggered.

· Association with EndPoint (0..*): A ScenarioDef may defined end points to be reached.

Constraints

a. Inherits constraints from UCMmodelElement.

b. @@@no self inclusion

b)
Concrete grammar

Relationships

· Inherits relationships from UCMmodelElement.

c)
Semantics

@@@TBD.

8.5.3 Initialization

@@@TBD

a)
Abstract grammar

Attributes

· value (String): @@@

Relationships

· Contained by ScenarioDef (1): An Initialization instance is contained in one scenario definition.

· Association with Variable (1): An Initialization is for one variable.

Constraints

a. @@@

b)
Concrete grammar
@@@

c)
Semantics

@@@TBD.

8.5.4 Variable

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
· type (DatatypeKind): @@@.

Relationships

· Inherits relationships from UCMmodelElement.
· Contained by UCMspec (1): Variable instances are contained in the UCM specification (see Figure 51/Z.151).

· Association with Initialization (0..*) [not navigable]: A Variable may be initialized many times.

· Association with EnumerationType (0..1): A Variable may be of Enumeration type.

· Uses DatatypeKind enumeration.
Constraints

a. Inherits constraints from UCMmodelElement.

b)
Concrete grammar

Relationships

· Inherits relationships from UCMmodelElement.

c)
Semantics

@@@TBD.

8.5.5 EnumerationType

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
· values (String): @@@.

Relationships

· Inherits relationships from UCMmodelElement.
· Contained by UCMspec (1): EnumerationType instances are contained in the UCM specification (see Figure 51/Z.151).

· Association with Variable (0..*): An EnumerationType may be used for variables.

Constraints

a. Inherits constraints from UCMmodelElement.

b)
Concrete grammar

Relationships

· Inherits relationships from UCMmodelElement.

c)
Semantics

@@@TBD.

8.5.6 DatatypeKind

A variable can be either a Boolean (BOOLEAN), an Integer (INTEGER), or an Enumeration (ENUMERATION). See Figure 58/Z.151.

a)
Abstract grammar

Attributes

· None (enumeration metaclass).

Relationships

· Used by Variable.

Constraints

None.

b)
Concrete grammar

None (enumeration metaclass).

c)
Semantics

@@@TBD.

8.6 UCM performance annotations

@@@TBD

[image: image79.emf]DeviceKind

Processor

Disk

DSP

Other

<<enumeration>>

ArrivalProcess

PoissonPDF

Periodic

Uniform

PhaseType

<<enumeration>>

Workload

closed : Boolean = false

arrivalPattern : ArrivalProcess

arrivalParam1 : String

arrivalParam2 : String

externalDelay : String

value : String

coeffVarSeq : String

population : String

StartPoint

0..1

1

workload

0..1

startPoint

1

GeneralResource

multiplicity : Nat

schedPolicy : String

ActiveResource

opTime : String

PassiveResource

ProcessingResource

kind : DeviceKind

Component

0..1

0..1

resource

0..1

component

0..1

0..1

0..*

host

0..1

components

0..*

ExternalOperation

Demand

quantity : String

1

0..*

resource1

demands

0..*

RespRef

repetitionCount : String = "1"

hostDemand : String

Responsibility

expression : String

0..*

1

demands

0..*

responsibility

1

1..*

1

respRefs

1..*

respDef

1

Figure 58/Z.151 Abstract grammar: UCM performance annotations

8.6.1 Workload

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
· closed (Boolean): @@@

· arrivalPattern (ArrivalProcess): @@@

· arrivalParam1 (String): @@@

· arrivalParam2 (String): @@@

· externalDelay (String): @@@

· value (String): @@@

· coeffVarSeq (String): @@@

· population (String): @@@

Relationships

· Inherits relationships from UCMmodelElement.
· Contained by StartPoint (1): A Workload instance is contained in one start point.

· Uses ArrivalProcess enumeration.
Constraints

a. Inherits constraints from UCMmodelElement.

b)
Concrete grammar

Relationships

· Inherits relationships from UCMmodelElement.

c)
Semantics

@@@TBD.

8.6.2 ArrivalProcess

The arrival pattern of a work load can be either a Poisson distribution (POISSONPDF), periodic (PERIODIC), uniform (UNIFORM), or of phase type (PHASETYPE). See Figure 59/Z.151.

a)
Abstract grammar

Attributes

· None (enumeration metaclass).

Relationships

· Used by Workload.

Constraints

None.

b)
Concrete grammar

None (enumeration metaclass).

c)
Semantics

@@@TBD.

8.6.3 GeneralResource

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from UCMmodelElement.
· multiplicity (Nat): @@@
· schedPolicy (String): @@@
Relationships

· Inherits relationships from UCMmodelElement.
· Contained by UCMspec (1): GeneralResource instances are contained in the UCM specification (see Figure 51/Z.151).

· GeneralResource is a superclass of PassiveResource and ActiveResource.

Constraints

a. Inherits constraints from UCMmodelElement.

b. All instances of GeneralResource must appear in one of its subclasses (that is, metaclass GeneralResource is abstract).

b)
Concrete grammar

Relationships

· Inherits relationships from UCMmodelElement.

c)
Semantics

@@@TBD.

8.6.4 PassiveResource

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from GeneralResource.
Relationships

· Inherits relationships from GeneralResource.
· Association with Component (0..1): A PassiveResource may have one component.

Constraints

a. Inherits constraints from GeneralResource.

b)
Concrete grammar
@@@

c)
Semantics

@@@TBD.

8.6.5 ActiveResource

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from GeneralResource.
· opTime (String): @@@.

Relationships

· Inherits relationships from GeneralResource.
· ActiveResource is a superclass of ProcessingResource and ExternalOperation.

Constraints

a. Inherits constraints from GeneralResource.

b. All instances of ActiveResource must appear in one of its subclasses (that is, metaclass ActiveResource is abstract).

b)
Concrete grammar
@@@

c)
Semantics

@@@TBD.

8.6.6 ProcessingResource

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from ActiveResource.
· kind (DeviceKind): @@@

Relationships

· Inherits relationships from ActiveResource.
· Association with Component (0..*): A ProcessingResource may have components.

· Uses DeviceKind enumeration.
Constraints

a. Inherits constraints from ActiveResource.

b)
Concrete grammar
@@@

c)
Semantics

@@@TBD.

8.6.7 DeviceKind

A processing resource can be either undefined (OTHER), a processor (PROCESSOR), a disk (DISK), or a DSP (DSP). See Figure 59/Z.151.

a)
Abstract grammar

Attributes

· None (enumeration metaclass).

Relationships

· Used by ProcessingResource.

Constraints

None.

b)
Concrete grammar

None (enumeration metaclass).

c)
Semantics

@@@TBD.

8.6.8 ExternalOperation

@@@TBD

a)
Abstract grammar

Attributes

· Inherits attributes from ActiveResource.
Relationships

· Inherits relationships from ActiveResource.
· Association with Demand (0..*): An ExternalOperation may have demands.

Constraints

a. Inherits constraints from ActiveResource.

b)
Concrete grammar
@@@

c)
Semantics

@@@TBD.

8.6.9 Demand

@@@TBD

a)
Abstract grammar

Attributes

· quantity (String): @@@

Relationships

· Contained by Responsibility (1): A Demand instance is contained in one responsibility.

· Association with ExternalOperation (1): A Demand is for one external operation.

Constraints

a. @@@

b)
Concrete grammar
@@@

c)
Semantics

@@@TBD.

8.7 UCM concrete grammar metaclasses

The following concrete grammar metaclasses may be contained by some of the abstract grammar metaclasses.

[image: image80.emf]DirectionArrow

Component

ConcreteStyle

lineColor : String

fillColor : String

filled : Boolean = false

0..1

0..1

component

0..1

style

0..1

Size

width : Integer

height : Integer

ComponentRef

0..1

0..1

compRef

0..1

size

0..1

PathNode

Position

x : Integer

y : Integer

0..10..1

compRef

0..1

pos

0..1

0..1

0..1

pathNode

0..1

pos

0..1

Condition

ConcreteCondition

label : String

description : String

10..1

condition

1

desc

0..1

Figure 59/Z.151 Concrete grammar: UCM concrete syntax metaclasses
8.7.1 DirectionArrow

@@@TBD

a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar
@@@ directionarrow is a subclass of pathnode. do i have to state that pathnode is a superclass in the abstract syntax of path node or in the concrete syntax section? Both I guess. This is a special case.

c)
Semantics

@@@TBD. I guess the semantics has to state something about its nodeconnections (as if the arrow was not there).

8.7.2 ConcreteCondition

@@@TBD

a)
Abstract grammar

None. This is a concrete syntax metaclass only.

b)
Concrete grammar
@@@

c)
Semantics

None.
9 Data language

10 URN supports a number of predefined basic types. These basic types include ones normally associated with a programming language, such as integer, boolean and enumerations.
11 [image: image81.emf]
12 URN interchange format

13 URN analysis

A dependency between two intentional elements can be interpreted as an upper bound of the satisfaction level of the depender based on the satisfaction level of the dependee. That is, in an evaluation of the goal model, the depender cannot be more satisfied than the dependee.

13.1 GRL model evaluation

13.2 UCM scenario path traversal

The path traversal mechanism traverses a UCM by starting at one or more parallel start points as defined by the user. The actual path to be traversed is determined by the initial value of path variables as defined by the user and the changes to these values at responsibilities during the traversal. The path traversal mechanism moves from one path element to the next if continuation criteria are met. Each UCM path element has specific criteria. The traversal ends when the last end point is reached. If the traversal gets stuck before that a warning shall be issued.

The path traversal mechanism as defined below assumes a sequential implementation of parallel paths. Furthermore, the choice of which parallel path to follow at any given time may be made at random since UCMs do not provide timing information sufficient enough for a more realistic simulation of parallel paths. If the path traversal mechanism encounters a non-deterministic choice point, a warning shall be issued. The traversal, however, may continue possibly by interacting with the user or by expanding multiple scenarios.

At this moment, the requirements for the path traversal mechanism (Table 4/Z.151) cover all path elements (with the exception of the abort element) but do not cover any structural elements such as component instances. Asynchronous triggering of a waiting place (i.e. waiting places connected to empty points) is also not covered. Aborts and asynchronous triggering could be added to the requirements fairly easily. In the case of structural elements, however, issues surrounding the identification of new component instances and references to existing components have to be solved before requirements for the path traversal mechanism can be formulated. A similar issue exists for plug-in instances and also needs to be solved. The requirements do not explicitly address the situation where the same start point is triggered multiple times during a scenario. Finally, the recognition of implicit loops is currently not a requirement for the path traversal mechanism.

The path traversal mechanism is the basis for many advanced applications of UCMs. Most of these applications require additional capabilities. Scenario highlighting and animation can be done with the basic path traversal mechanism. The ability to associate path elements with sequence numbers indicating the order in which the path elements were traversed, however, makes repeated highlighting and animation more efficient. The generation of Message Sequence Charts requires the ability to deal with component information and a well-nestedness transformation/warning mechanism. The generation of Layered Queuing Networks requires the ability to deal with arrival and device characteristics, device demands, data access modes, and response-time requirements. Test case generation requires the ability to deal with information about controllable and observable activities. None of these additional capabilities, however, is currently a requirement for the path traversal mechanism.

Table 4/Z.151 Requirements for Path Traversal Mechanism

	ID
	Requirement

	1
	Path Traversal shall start at 1 to N parallel scenario start points as defined by the user (scenario-start).

	2
	Path Traversal shall start with initial values (true, false, or undetermined) for each path data variable as defined by the user (variable-init).

	3
	Path Traversal shall move from path element A to path element B if

a) Path Traversal is currently visiting path element A, and

b) there is a direct connection from A to B (hyperedge-connection), and

c) the path continuation condition of path element A to path element B is fulfilled.

	4
	The path continuation condition for a start point shall be fulfilled if the logical expression for its guard evaluates to true (logical-condition of start).

	5
	The path continuation condition for end points not directly connected to waiting places or timers shall be always fulfilled.

	6
	The path continuation condition for a responsibility shall be always fulfilled.

	7
	The path continuation condition for an OR-fork shall be fulfilled if the path continuation condition of exactly one branch of the OR-fork is fulfilled.

	8
	The path continuation condition for a branch of an OR-fork shall be fulfilled if the logical expression for the branch evaluates to true (branch-condition of path-branching-characteristic).

	9
	The path continuation condition for an OR-join shall be always fulfilled.

	10
	The path continuation condition for each branch of an AND-fork shall be always fulfilled.

	11
	The path continuation condition for an AND-join shall be fulfilled if Path Traversal is currently visiting the AND-join for all of its incoming paths.

	12
	The path continuation condition for a loop shall be fulfilled if the path continuation condition of exactly one branch is fulfilled (either the loop branch or the exit branch).

	13
	The path continuation condition for the loop branch shall be fulfilled if the logical expression for the loop exit evaluates to false (exit-condition of loop).

	14
	The path continuation condition for the exit branch shall be fulfilled if the logical expression for the loop exit evaluates to true (exit-condition of loop).

	15
	The path continuation condition for a static stub shall be always fulfilled.

	16
	The path continuation condition for a dynamic stub shall be fulfilled if the path continuation condition of exactly one plug-in of the dynamic stub is fulfilled.

	17
	The path continuation condition for a plug-in of a dynamic stub shall be fulfilled if the logical expression for the selection policy of the plug-in evaluates to true (branch-condition of plug-in-binding).

	18
	The path continuation condition for an end point and a waiting place connected directly with each other shall be fulfilled if

d) Path Traversal is currently visiting the end point and the waiting place and

e) the logical expression for the guard of the waiting place evaluates to true (logical-condition of waiting-place).

	19
	The path continuation condition for a waiting place shall be fulfilled if the logical expression for its guard evaluates to true (logical-condition of waiting-place).

	20
	The path continuation condition for an end point and a timer connected directly with each other shall be fulfilled if

f) Path Traversal is currently visiting the end point and the timer and

g) the path continuation condition for the non-timeout path of the timer is fulfilled.

	21
	The path continuation condition for a timer shall be fulfilled if exactly one of the following cases occurs:

h) The path continuation condition for the non-timeout path is fulfilled.

i) The path continuation condition for the timeout path is fulfilled.

	22
	The path continuation condition for a non-timeout path shall be fulfilled if

j) the timer’s timeout variable is set to false (timeout-variable of waiting-place) and

k) the timer’s guard evaluates to true (logical-condition of waiting-place).

	23
	The path continuation condition for a timeout path shall be fulfilled if

l) the timer’s timeout variable is set to true (timeout-variable of waiting-place) and

m) a timeout path exists for the timer.

	24
	The path continuation condition for an empty point shall be always fulfilled.

	25
	Path Traversal shall execute the value assignment statements of a responsibility (variable-operation-list) if the path continuation condition for the responsibility is fulfilled.

	26
	Path Traversal shall execute the value assignment statements of a responsibility in the order defined by the user.

	27
	Path Traversal shall update the values of the path data variables immediately after executing one value assignment statement.

	28
	Path Traversal shall evaluate a logical expression to undetermined if any value within the logical expression evaluates to undetermined.

	29
	Path Traversal shall stop if it cannot move to another path element from any of the currently visited path elements.

	30
	Path Traversal shall regard the values of the path variables at the time path traversal stopped as postconditions of the traversed scenario.

	31
	Path Traversal shall issue a warning if Path Traversal has stopped, and

n) Path Traversal is currently visiting one or more path elements other than end points or

o) Path Traversal is currently visiting one or more end points connected directly to waiting places or timers or

p) the postconditions of the traversed scenario do not match the postconditions defined by the user.

14 Compliance statement

The following table describes the requirements for URN-FR as described in Z.150, together with an assessment of how well the UCM notation conforms to these requirements.

Table 5/Z.151 URN-NFR compliance table

	ID
	Requirement
	Type
	R/O
	Depends On
	Conf
Status
	 Explanation

	02200
	Cross-reference operationalizations in the NFR model to responsibilities in the FR model
	B
	R
	
	C
	Through attributes and non-intentional elements which are responsibilities.

	02300
	Cross-reference performance constraints identified in the NFR model to responsibilities or scenarios in the FR model
	B
	R
	
	C
	Through attributes of performance softgoal and non-intentional elements which are responsibilities and scenarios.

	90100
	Specify ill-defined, tentative quality requirements
	NFR
	R
	
	C
	

	90200
	Specify satisficing of quality requirements
	NFR
	R
	
	C
	

	90300
	Specify refinement of quality requirements
	NFR
	R
	
	C
	

	90400
	Specify alternative refinement of quality requirements
	NFR
	O
	
	C
	

	90500
	Specify alternative functional requirements
	NFR
	R
	
	C
	

	90600
	Specify quality requirement priorities
	NFR
	R
	
	C
	A priority attribute is added to goals, softgoals.

	90700
	Specify synergies and conflicts among quality requirements
	NFR
	R
	
	C
	

	90800
	Specify argumentation during modeling
	NFR
	R
	
	C
	

	90900
	Specify multiple stakeholders’ interests
	NFR
	R
	
	C
	

	91000
	Specify business objectives
	NFR
	R
	
	C
	

	91100
	Specify links between high-level objectives and lower-level specifications
	NFR
	O
	
	C
	

	91200
	Support requirements change traceability
	NFR
	R
	
	C
	

	91300
	Support requirements priority traceability
	NFR
	R
	
	C
	

	91400
	Integrate quality and functional requirements
	B
	R
	
	C
	Reflected in 02200,02300

	91500
	Specify quantitative quality requirements
	NFR
	R
	
	P
	Attributes provide partial support. Further support will be needed

	91600
	Support incremental commitments of requirements
	NFR
	R
	
	C
	

	91700
	Knowledge base support
	NFR
	O
	
	N
	This belongs to methodology, so it is not required for the notation. GRL already has an underlying knowledge base that could be used in the future to provide know-how extraction.

	91800
	Support detection of conflicting and synergistic quality requirements
	NFR
	O
	
	N
	Needs knowledge base and Correlation catalogue support

	91900
	Ease of use but also precision
	NFR
	R
	
	C
	Supported be current level of formality.

Table 6/Z.151 UCM compliance table

	ID
	Requirement
	Type
	R/O
	Depends On
	Conf
Status
	 Explanation

	00100
	Specify the set of input events at scenario start point
	FR
	R
	
	C
	

	00200
	Specify the set of output events at scenario end point
	FR
	R
	
	C
	

	00300
	Specify preconditions at scenario start points
	FR
	R
	
	C
	

	00400
	Specify post-conditions at scenario end points
	FR
	R
	
	C
	

	00500
	Identify input sources, that is, whether the sources are human or machine
	FR
	R
	
	N
	

	00600
	Identify output sources, that is, whether the sources are human or machine
	FR
	R
	
	N
	

	00700
	Specify system operations in terms of a causal flow of responsibilities
	FR
	R
	
	C
	

	00800
	Specify alternative courses of action within a scenario
	FR
	R
	
	C
	

	00900
	Specify repetitive action within a scenario
	FR
	R
	
	C
	

	01000
	Specify parallel courses of action within a scenario
	FR
	R
	
	C
	

	01100
	Specify synchronization within a scenario
	FR
	R
	
	C
	

	01200
	Specify synchronization between scenarios
	FR
	R
	
	C
	

	01300
	Specify a lengthy scenario by way of a root map and references to child maps; child maps may have children
	FR
	R
	
	C
	

	01301
	Specify preconditions at the entry points to a child map
	FR
	R
	
	C
	

	01302
	Specify post-conditions at the exit points from a child map
	FR
	R
	
	C
	

	01400
	Group related scenarios
	FR
	R
	
	C
	

	01450
	Specify individual scenarios
	FR
	R
	
	C
	

	01500
	Specify feature interactions
	FR
	R
	
	C
	

	01600
	Specify scenarios without reference to components
	FR
	R
	
	C
	

	01700
	Specify scenarios with reference to components and the allocation of responsibilities to components
	FR
	R
	
	C
	

	01800
	Specify scenarios with reference to Commercial-Off-The-Shelf (COTS) components
	FR
	R
	
	C
	

	01900
	Specify scenarios with reference to conceptual components
	FR
	R
	
	C
	

	02000
	Specify the behaviour of the system’s environment
	FR
	R
	
	C
	Same requirements as for specifying scenarios

	02100
	Elicit requirements, that is, use the notation to reason about domain knowledge
	FR
	R
	
	C
	

	02200
	Cross-reference operationalizations in the NFR model to responsibilities in the FR model
	B
	R
	
	C
	Through attributes and non-intentional elements which are responsibilities.

	02300
	Cross-reference performance constraints identified in the NFR model to responsibilities or scenarios in the FR model
	B
	R
	
	C
	Through attributes of performance softgoal and non-intentional elements which are responsibilities and scenarios.

15 Tool compliance

This clause defines the compliance for tools that claim to support the User Requirements Notation.

The validity of a specification is defined as in section 5.2.1.

15.1 Definitions of valid tools

15.1.1 Compliant URN tool

A tool that detects non-compliance of a description with ITU-T Rec. Z.151. If the tool handles a superset notation, it is allowed to categorize non-compliance as a warning rather than a failure.

15.1.2 Valid URN tool
A compliant URN tool that supports the graphical grammar defined in ITU T Recs. Z.151.

15.1.3 Compliant GRL tool

A tool that detects non-compliance of a GRL description with ITU-T Rec. Z.151. If the tool handles a superset notation, it is allowed to categorize non-compliance as a warning rather than a failure.

15.1.4 Valid GRL tool

A compliant UCM tool that supports the GRL graphical grammar defined in ITU T Rec. Z.151.

15.1.5 Compliant UCM tool

A tool that detects non-compliance of a UCM description with ITU-T Rec. Z.151. If the tool handles a superset notation, it is allowed to categorize non-compliance as a warning rather than a failure.

15.1.6 Valid UCM tool

A compliant UCM tool that supports the UCM graphical grammar defined in ITU T Rec. Z.151.
15.2 Conformance

A conformance statement clearly identifying the language features and requirements not supported should accompany any tool that handles a subset of ITU-T Rec. Z.151. If no conformance statement is provided, it shall be assumed that the tool is a valid URN tool. It is therefore preferable to supply a conformance statement; otherwise, any unsupported feature allows the tool to be rejected as not valid.

Annex A
 URN Interchange Format: XML Schema
Appendix I
Summary of the URN Notation
(This appendix does not form an integral part of this Recommendation)

<Body of appendix I>

Examples of GRL Propagation Algorithms

(This appendix does not form an integral part of this Recommendation)

<Body of appendix I>

Example of UCM Traversal Mechanism
(This appendix does not form an integral part of this Recommendation)

<Body of appendix I>
URN Change Request Form

	Please fill in the following details

	Character of change:
	 error correction
	 clarification

	
	 simplification
	 extension

	
	 modification
	 decommission

	Short summary of change request

	Short justification of the change request

	Have you consulted other users
	 yes
	 no

	Is this view shared in your organization
	 yes
	 no

	How many users do you represent?
	 1-5
	 6-10

	
	 11-100
	 over 100

	Your name and address

Please attach further sheets with details if necessary

URN (Z.151) Rapporteur, c/o ITU-T, Place des Nations, CH-1211, Geneva 20, Switzerland. Fax: +41 22 730 5853, e‑mail: urn.rapporteur@ties.itu.int.

�Table title style does not work that well

table title should not be “title case”?

�have to agree on whether we use “instance” and “instances” for relationships and/or constraints

�TO CHECK:

 Use of abstract/concrete “syntax” vs “grammar”�- true/false was checked

 Used FigureNoCaption for all figures (changed it to “keep with next”

 Added captions to all figures.

�To be revised for final version

�To be completed if needed

�To be sent for consent in September 2008

�Due this September. Use old SDL? Mention Z.100?

�Due this September. Will help avoiding references to UML and OCL, requiring A5 documents.

�Needed? Hopefully not.

�Need to add terms?

Do language elements (e.g. actor, softgoal) have to be defined here?

�Not used at this point

�Not used at this point

�Should ITU-T be added

�Not used at this point

�Only used in reference to XML schema standards

�Not used at this point

�Not used at this point

�Not used at this point

�NEW! Entirely revised section. Now refers to Z.111.

�Discuss URN data types?

�To be discussed with Sepideh

�Check with Sepideh

�Might need to be improved.

�Check with Sepideh

�Complex. May need to split.

�Jennifer: Should this cover IOR as well? Mean-ends are usually used for mutually exclusive tasks.

�Check with Jennifer.

Similar for component references

�CHECK for other types of labels and positions!

�Path nodes and node connection on the same UCM map

�Visual examples required?

�Be more precise – what type of expression is it?

�Add link to general description of data model

�Be more precise – what type of expression is it?

�Be more precise – what type of expression is it?

�Be more precise – what type of expression is it?

�too strict?

�No deferred choice – can be added to the standard later?

�Do I need to say that N tokens arrive but only 1 token leaves?

�Should we say that nothing happens?

�Constraint about all three path nodes being bound to the same componentRef?

�do we need a figure caption for this?

�Figure caption?

�Figure caption?

�Figure caption?

�Be more precise – what type of expression is it?

�Completion and integration of the data language defined in � HYPERLINK "http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/HelpOnLine#BNF_Grammar" ��http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/HelpOnLine#BNF_Grammar� (supports a concrete syntax compatible with Java and SDL). The EBNF used needs to be in line with Z.111 however.

�XML schema corresponding to the concrete syntax metamodel (XSD file hopefully generated automatically). An example can be found at � HYPERLINK "http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/DraftZ151Metamodel#XML_Schema" ��http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/DraftZ151Metamodel#XML_Schema�

�To be revised and completed based on the theses of Jason Kealey and Jean-François Roy (� HYPERLINK "http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/UCMVirtualLibrarySearchAll?all=jucmnav" ��http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/UCMVirtualLibrarySearchAll?all=jucmnav�)

�This makes sense to me, but in the way it seemed to be implemented in the paper there was some part where the evaluation values of dependums were defaulted to 0 quite often. Maybe I misunderstood, but it seems a very pessimistic way to evaluate, I couldn’t envision a scenario where an element that depends on another element could ever be more than 0! (Something must be wrong with my understanding). When we evaluate dependencies for “hard” elements, I just take the min of the incoming dependency and whatever other relationships the element is involved in, so it will never be higher than the dependency. When we evaluate them for softgoals, the dependum contributes like a "Make" link. This relates to my point later about evaluation. I'm not sure yet that there is a "standar" way to go about it.

�I’m curious to see what you will put here. There are different approaches to evaluate GRL/i* models, qualitative and quantitative. Also, the rules for resolving values, especially for softgoals, can be controversial. I don’t really think there is a standard way to do this yet, so it might not be advisable to put it in the standard. After reading through the paper describing evaluation, I have some issues with the way that softgoals, dependencies, and overall actors are evaluated, although for quantitative evaluation I don’t necessary have good alternative solutions yet. Maybe the quantitative approach to evaluation that you’ve introduced can be introduced as “one way” to evaluate GRL models, and the rules for the resolution of dependencies, softgoals, and overall actor values can be introduced as “example rules” that can be used. It depends on whether you want the standard of GRL model evaluation to reflect and be inclusive of work in i* evaluation (mine but also other's as well) or whether you just want to pick a single way to go about it in order to avoid confusing new users.

�Will be guidelines and examples, no single algorithms will be imposed. We need to cover: a qualitative evaluation, a quantitative evaluation, and perhaps an interactive evaluation.

�To be updated with new Z.150 table once the structure of Z.151 is complete.

�New section!

	Contact:

	Daniel Amyot

Industry Canada

Canada

	Tel: +1 613-562-5800 x6947

Fax: +1 613 562-5664

Email: damyot@site.uottawa.ca

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

	

Printed in Switzerland

Geneva, 1998
TSB:\SG17\DELAYED\D15-3.DOC
03/08/2008

