PAGE
- 6 -

	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 17

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2005-2008
	TD 3201

	
	English only

Original: English

	Question(s):
	12/17
	Jeju, Korea, 19-28 April 2006

	TEMPORARY DOCUMENT

	Source:
	Rapporteur

	Title:
	New draft Recommendation Z.152: URN — Use Case Map Notation (UCM)

TSB Note: this document is available in soft copy only

NEW DRAFT RECOMMENDATION Z.152: URN — USE CASE MAP NOTATION (UCM)

This document contains the specification of the Use Case Map (UCM) notation, the proposed functional requirements notation (URN-FR) for the Recommendation Z.150: User Requirements Notation (URN) – Language requirements and framework.
NEW DRAFT RECOMMENDATION Z.152:
URN — USE CASE MAPS NOTATION (UCM)
Summary
Scope-objective

This Recommendation defines the UCM (Use Case Map) notation, intended for describing user (functional) requirements scenarios in a formal way without any reference to implementation mechanisms and with optional dependency on component specification. Such a notation is needed to capture user requirements prior to any design. The UCM notation is part of the more general User Requirements Notation (URN).

Coverage

The UCM notation has concepts for the specification of behaviour and structures. This document presents textual and graphical representations of UCM constructs, and an assessment of conformity of the current UCM representations to the requirements for URN.

Applications

UCM is applicable within standard bodies and industry. The main applications areas include telecommunication systems but URN is generally suitable for describing reactive and distributed systems. The range of application is from requirement description to high-level design.

Status/Stability

This proposed Recommendation is a draft reference manual.

The main text is accompanied by the following:

· Annex A

UCM Document Type Definition

· Annex B

Use Case Maps Tutorial

· Appendix I

Tool issues

· Bibliography

· UCM Change Request Form

Associated work

This work is associated with the general URN framework (Z.150) the non-functional requirements language for URN (Z.151: URN — Goal-oriented Requirement Language (GRL)), and other ITU-T languages in the Z family.

Keywords

Formal description technique, functional requirements specification, graphical notation, hierarchical decomposition, scenario definitions, specification technique.

TABLE OF CONTENTS

71
Scope

2
References
7
3
Definitions
7
4
Abbreviations and acronyms
7
5
Language definition conventions
7
5.1
Graphical representation
7
5.2
Textual representation
7
6
Use Case Map notation definition overview
8
6.1
Introduction
8
6.2
Behavioural specification
9
6.3
Scalable system specification
9
6.4
Modular system specification
9
6.5
Valid paths
9
6.6
Architecture
9
6.7
Performance annotations
10
6.8
Functional goals
10
7
Top-level elements
10
7.1.1
XML definition
10
7.1.2
Graphical notation
10
8
Path notation
10
8.1
Hypergraph
10
8.1.1
XML definition
11
8.1.2
Graphical notation
11
8.1.3
Example
11
8.2
Start points
12
8.2.1
XML definition
13
8.2.2
Graphical notation
13
8.3
End points
13
8.3.1
XML definition
14
8.3.2
Graphical notation
14
8.4
Events and conditions
14
8.4.1
XML definition
14
8.4.2
Graphical notation
14
8.5
Responsibility references
14
8.5.1
XML definition
15
8.5.2
Graphical notation
15
8.6
OR-forks and OR-joins
15
8.6.1
XML definition
15
8.6.2
Graphical notation
15
8.7
AND-forks, AND-joins, and synchronizations
15
8.7.1
XML definition
16
8.7.2
Graphical notation
16
8.8
Loops
16
8.8.1
XML definition
17
8.8.2
Graphical notation
17
8.9
Stubs
17
8.9.1
XML definition
18
8.9.2
Graphical notation
18
8.10
Waiting places and timers
18
8.10.1
XML definition
19
8.10.2
Graphical notation
19
8.11
Aborts
19
8.11.1
XML definition
19
8.11.2
Graphical notation
19
8.12
Connections
19
8.12.1
XML definition
20
8.12.2
Graphical notation
20
8.12.3
Examples
20
8.13
Performance and goal annotations
20
8.14
Empty segments
20
8.14.1
XML definition
21
8.14.2
Graphical notation
21
8.15
Path branching specification
21
8.15.1
XML definition
22
8.15.2
Graphical notation
22
9
Components and structures
22
9.1
Component definitions
22
9.1.1
XML definition
23
9.1.2
Graphical notation
23
9.2
Structure specification
24
9.2.1
XML definition
25
9.2.2
Graphical notation
25
9.2.3
Example
25
10
Binding of plug-ins
26
10.1
Plug-in bindings
26
10.1.1
XML definition
27
10.1.2
Graphical notation
27
10.2
Enforced bindings
27
10.2.1
XML definition
28
10.2.2
Graphical notation
28
10.2.3
Example
28
11
Responsibility definitions and dynamic responsibilities
28
11.1.1
XML definition
29
11.1.2
Graphical notation
29
11.1.3
Examples
29
12
Annotations
30
12.1
Performance requirements
31
12.1.1
XML definition
32
12.1.2
Graphical notation
33
12.2
Functional goals
33
12.2.1
XML definition
34
12.2.2
Graphical notation
34
13
Dynamic semantics
34
13.1
Scenario Definitions
34
13.1.1
Path variables
35
13.1.2
Scenarios and groups
35
13.2
Path Traversal Mechanism
36
14
Static semantic constraints and well-formedness rules
38
14.1
References to identifiers
39
14.2
Well-formed rules for hypergraphs
40
15
Compliance statement
41
Annex A UCM Document Type Definition
43
Annex B Use Case Maps Tutorial
51
B.1
Description of causal scenarios and architectures
51
B.1.1
Description of a simplified call screening scenario
51
B.1.2
Evaluation of architectural alternatives for functional entities
52
B.2
Refinements with Message Sequence Charts
53
B.2.1
MSC refinements of bound maps
53
B.2.2
Structural alternatives for functional entities and network entities
54
B.2.3
MSC refinements of bound maps with constrained communication mechanisms
54
B.3
Integration of scenarios
55
B.3.1
Simplified call initiation scenario
56
B.3.2
Three features described in isolation
56
B.3.3
Integrated scenarios
57
B.3.4
Feature interactions and selection policies
59
B.4
Description of highly dynamic systems
60
B.4.1
Description of dynamic architectures
60
B.4.2
Description of mobile behaviour
61
B.5
Two Examples of Path Traversal Mechanisms
61
B.5.1
First Example
62
B.5.2
Second Example
65
Appendix I Tool issues
70
Bibliography
71

ITU-T Draft Recommendation Z.152

URN — Use Case Map Notation (UCM)
1 Scope

The document defines and illustrates the Use Case Map notation (UCM). It also presents how the UCM notation satisfies the language requirements of URN-FR (User Requirements Notation — Functional Requirements) as defined in Z.150.

2 References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is published regularly.

· ITU-T Recommendation Z.150, User Requirements Notation (URN) -
3 Definitions

This Recommendation uses the terms defined in the Definitions section in Z.150 (clause 3).

4 Abbreviations and acronyms

This Recommendation uses the abbreviations and acronyms defined in Z.150 (clause 4).

5 Language definition conventions

The UCM notation is a graphical notation that supports annotations. Each element of the notation has a textual representation (in XML) and where applicable a graphical representation.

5.1 Graphical representation

Note: The convention used here is informal. At the moment. ITU-T Study Group 17 is in the process of considering a standard for specifying the graphical representation of language elements. Once this standard is available, it will be applied to the UCM notation’s graphical elements.

5.2 Textual representation

XML (W3C's eXtensible Markup Language) is used for the textual representation of the UCM notation’s elements. The textual representation is contained in a URN-FR Document Type Definition (DTD). XML DTDs describe the syntax of languages in terms of elements and their attributes. Elements define the document structure by describing containment rules, and attributes describe mandatory and optional variables and their data types for further qualifying elements and references to elements. See Appendix I.1 in Z.150 for a brief tutorial on XML.

XML is an appropriate language for describing the integration of the URN-NFR language with the URN-FR language, as well as layout information when necessary. Also, XML supports a simple evolution path towards the integration of URN with UML through technologies such as OMG's Meta-Object Facility (MOF) and XML Metadata Interchange (XMI).

UCM DTD elements and attributes will be described inside shaded boxes using the Courier font. XML elements use lowercase characters (element) whereas XML attributes are in lowercase-italic (attribute) and XML keywords are in uppercase-bold (KEYWORD).

6 Use Case Map notation definition overview

The language definition is divided up into a number of sections. The division reflects the major features of the notation.

6.1 Introduction

The URN-FR language specified here is the Use Case Maps (UCM) notation. UCM specifications employ scenario paths to illustrate causal relationships among responsibilities. Furthermore, UCMs provide an integrated view of behaviour and structure by allowing the superimposition of scenario paths on a structure of abstract components. The combination of behaviour and structure enables architectural reasoning after which UCM specifications may be refined into more detailed models such as MSCs and UML interaction diagrams. These detailed models may be transformed into state machines in SDL or UML statechart diagrams and finally into concrete implementations (possibly through automated code generation). Validation, verification, performance analysis, interaction detection, and test generation could be performed at all stages. Thus, the UCM notation enables a seamless transition from the informal to the formal by bridging the modeling gap between requirements (use cases) and design in an explicit and visual way. The UCM notation allows the user to delay the specification of component states and messages and even, if desired, of concrete components to later, more appropriate, stages of the development process. The goal of the UCM notation is to provide the right degree of formality at the right time in the development process.

UCM specifications identify input sources and output sinks as well as describe the required inputs and outputs of a scenario but also integrate many scenarios or related use cases in a map-like diagram. Scenarios can be structured and integrated incrementally. This enables reasoning about and detection of potential undesirable interactions of scenarios and components. Furthermore, the dynamic (run-time) refinement capabilities of the UCM notation allow for the specification of (run-time) policies and for the specification of loosely coupled systems where functionality is decided at runtime through negotiation between components. UCM scenarios can be integrated together, yet individual scenarios are tractable through scenario definitions based on a simple data model.

The UCM notation is a specification language intended for specifiers as well as non-specialists because of its visual, simple, and intuitive nature but at the same time it aims to provide sufficient rigorousness for programmers or tools and contracts.

Most of the characteristics of excellent requirements such as verifiable, complete, consistent, unambiguous, understandable, modifiable, and traceable can be supported by UCMs. Others such as prioritized and annotated are easily incorporated.

UCMs treat scenario paths as first class model entities and therefore build the foundation to more formally facilitate reusability of scenarios and behavioural patterns across a wide range of architectures.

6.2 Behavioural specification

Behavioural specification is accomplished by using the scenario path and responsibility elements of the notation (Sections 8 and 11).

The path notation allows for the specification of an end-to-end path through the system from an input event along a sequence of responsibilities to one of more output events. A path specification can be strictly a behavioural specification. That is, the specification of a path does not require the specification of components. As a result, in UCMs behavioural specifications are first class entities. There is no need to posit an architecture in order to specify the behaviour of the system. Connections between responsibilities are causal; no mechanism is specified or implied.

An input event can belong to a class of events each of which is handled more or less the same by the system. Elements of the path notation allow the specification of the handling of a class of events in one path specification. The path notation contains numerous control elements such as OR-fork, OR-join, and loop for this purpose.

The path notation also contains elements such as timers, AND-forks (for concurrency within a single path specification), and AND-joins (for synchronization of events internal to a single path specification) required for the specification of reactive system behaviour.

A system response may involve the synchronization of many external input events. Each of these events causes a unique path to execute. In the majority of cases these external events do not belong to the same class and therefore are the subject of separate path specifications. The path notation contains elements such as waiting places and connections to express interactions between these concurrent paths.

6.3 Scalable system specification

The UCM notation has elements to allow it to handle the specification of large systems with complex behaviour. A system specification is essentially a set of path specifications. The constraints on presenting a path specification to a human viewer dictate that a large system specification be composed of a set of root maps. Each root map contains one or more path specifications. A lengthy path specification can fit into a root map by moving segments of it to child maps using the stub-plug-in mechanism. The stub on the parent map represents the plug-in on the child map. A plug-in is a path specification, and it can contain stubs. A child map can, therefore, have children. See Sections 7, 8.9, and 10.

6.4 Modular system specification

The stub-plug-in mechanism may also serve to represent segments of behaviour that recur in many path specifications.

6.5 Valid paths

A path specification may contain many valid paths. The set of valid paths in a path specification is defined by the mechanism of scenario definitions, path variables, and expressions containing path variables. The set of valid paths for a system can be organized into groups and a list of groups. See Section 13.

6.6 Architecture

Architecture is defined by allocating path elements to components. Architectural definition is viewed as a high-level design activity. Developers can use the path specifications created by the requirements engineer as the basis for one or more high level designs. See Section 9.

6.7 Performance annotations

UCMs may be annotated for the purpose of evaluating their performance using performance evaluation tools. See Sections 8.2, 8.13, 8.15 and 12.1
6.8 Functional goals

UCMs may be annotated for the purpose of specifying the functional goals of a path specification. See Sections 8.13 and 12.2.
7 Top-level elements

A UCM specification is composed of a collection of path variables, a collection of (top-level) root-maps and, possibly, of a collection of plug-in-maps, with their bindings. Both root maps and plug-in maps define functional requirements models (ucm-model). Root maps however describe the top-level functional requirements whereas plug-in maps describe (reusable or shared) partial requirements or sub-requirements. A ucm-model contains sub-specifications for its scenario paths and for its component structure. It also has several attributes: an identifier, a name, a title, and a description.

7.1.1 XML definition

<!ELEMENT urn-fr-spec (path-variable-list?, root-maps, plug-in-maps?,

 plug-in-bindings?, scenario-list?)>

<!ELEMENT root-maps (ucm-model)+>

<!ELEMENT plug-in-maps (ucm-model)*>

<!ELEMENT ucm-model (path-spec?, structure-spec?)>

<!ATTLIST ucm-model

 ucm-model-id ID #REQUIRED
 ucm-model-name CDATA #REQUIRED
 title CDATA "No title"

 description CDATA #IMPLIED >

7.1.2 Graphical notation

No graphical notation is required for these DTD elements.

8 Path notation

8.1 Hypergraph

This section defines the UCM path notation used for the definition of causal scenarios (also called maps) included in the element path-spec. A path specification of a ucm-model details the underlying hypergraph that represents the causal scenarios, i.e. the paths. A hypergraph is a graph structure specifying all the elements (called hyperedges) that make up the paths and their interconnections. It also includes the specification of path branching forks as well as constraints on the plug-in maps (i.e. the sub-maps) that can be connected. Hyperedges contain the basic path constructs: start and end points; waiting places; responsibility references; OR-joins and OR-forks; AND-joins and AND-forks (synchronizations); loops; aborts; connections; stubs; performance and goal annotations; and empty segments. All hyperedges have an identifier, a name, a description, and the horizontal/vertical (XY) coordinates of the hyperedge on the map workspace (fx and fy are real numbers between 0 and 1). Attributes lx and ly specify the location of the hyperedge name (if any) relative to the location of the hyperedge (i.e. -fxlx 1-fx, and -fy ly 1-fy).

A hypergraph has a list of connections between hyperedges (hyperedge-connection). Each such connection is a source-hyperedge attribute and a list of references to target hyperedges (hyperedge-ref). These references (of attribute type IDREF) must refer to existing hyperedge identifiers (of attribute type ID).

8.1.1 XML definition

<!ELEMENT path-spec (hypergraph)?>

<!ELEMENT hypergraph (hyperedge*, hyperedge-connection*,

 path-branching-spec*, enforce-bindings*)>

<!ELEMENT hyperedge ((start | end-point | responsibility-ref |

 fork | join | synchronization | loop | stub |

 waiting-place | abort | connect | timestamp-point |

 goal-tag | empty-segment)) >

<!ATTLIST hyperedge

 hyperedge-id ID #REQUIRED
 hyperedge-name CDATA #IMPLIED
 fx NMTOKEN #IMPLIED
 fy NMTOKEN #IMPLIED
 lx NMTOKEN #IMPLIED
 ly NMTOKEN #IMPLIED
 description CDATA #IMPLIED >

<!ELEMENT hyperedge-connection (hyperedge-ref)*>

<!ATTLIST hyperedge-connection

 source-hyperedge IDREF #REQUIRED >

<!ELEMENT hyperedge-ref EMPTY>

<!ATTLIST hyperedge-ref

 hyperedge-id IDREF #REQUIRED >

8.1.2 Graphical notation

A line (spline) is used to represent connected path elements (hyperedges) that belong to a causal scenario. The hyperedges themselves have different visual representations depending on their nature, and they will be defined formally in the next sub-sections.

8.1.3 Example

The next two figures are used as an introduction example to the path notation. The core elements are present in the simple map shown in Figure 1/Z.152. This causal scenario path represents a simplified call connection initiated through the start point req. The system first checks whether the call should be allowed (responsibility chk) and then verifies whether the called party is busy or idle (vrfy). The assumption in this scenario (i.e. a precondition) is that the called party is idle. Then, the system status is updated (upd) and a resulting ringing event occurs at the end point (ring). The causal path is shown as a line (usually a spline) that connects the various hyperedges.

Figure 1/Z.152 [image: image1.emf]Causal Path

End Point

req

ring

vrfyupdchk

Start Point

Responsibilities

Basic UCM notation elements

UCMs can also help structuring and integrating scenarios in various ways, e.g. sequentially, as alternatives (with OR-forks/joins) or concurrently (with AND-forks/joins). Conditions can be attached to alternative paths. Stubs are containers for sub-maps called plug-ins and can also be used to integrate, structure, and reuse scenarios. Figure 2/Z.152(a) extends the simple connection example by using some of these notation elements. The verification responsibility (vrfy) may cause the selection of the idle path, which then splits into two concurrent paths for ringing (ring) and for signaling (sig) the occurrence of a prepared ringback reply (prb). Else, the busy path could be selected, which would result in the signaling of a prepared busy reply (pb). Figure 2/Z.152(b) presents a potential plug-in map for the Originating stub from Figure 2/Z.152(a). This TeenLine plug-in checks the current time (chkTime) and, if in the predefined range, requires a valid personal identification number (PIN) to be provided in a timely fashion for the call initiation to continue. If an invalid PIN is provided, or if a time-out occurs, then a denied reply is prepared (pd). The input/output path segments attached to stubs are labeled for binding plug-in start/end points. The binding relationship is {<IN1, in1>, <OUT1, out1>, <OUT2, out2>} connects the stub path segments of the parent map to the start/end points of the plug-in.

Figure 2/Z.152 [image: image2.emf]b) TEENLINE plug-in map

in1

out2

out1

chkTime

[notInRange]

[inRange]

pd

getPIN

[invalid]

[valid]

Timer

Time-out Path

req

ring

Originating

upd

sig

[idle]

[busy]

pb

vrfy

IN1

OUT1

OUT2

Dynamic Stub

prb

IN1

OUT1

Display

AND (fork)

ConditionOR (fork)

OR (join)

Segment Label

a) Call initiation root map

Extension of the call connection example and additional UCM notation elements

All these elements are defined individually in the remaining sub-sections.

8.2 Start points

A start point is where scenarios are caused, upon the arrival of associated triggering events and/or the satisfaction of associated preconditions. A start hyperedge should be connected to only one target hyperedge. It has no source hyperedge except when linked to an end-point by a connect hyperedge. A triggering-event-list gives the set of events that can initiate the causal scenario along a path. The required events can be composed in many ways (user-defined), but by default one of them is sufficient for triggering the scenario. The precondition-list must also be satisfied in order for the scenario to be enabled. Several attributes used for performance analysis can be attached to a start point:

· stream-type: defines whether an arrival stream is open (default), or closed with a fixed number of users.

· population-size: parameter describing a fixed number of users for closed arrival streams. Systems with closed arrivals imply the presence of a cycle from the start to the end point, which means that overall cycle time for the execution of the path can be measured as part of the performance evaluation

· mean: parameter for exponential and Erlang arrival distributions.

· value: parameter for deterministic arrival distribution.

· low, high: parameters for uniform arrival distribution.

· kernel: parameter for Erlang arrival distribution.

· expert-distribution: parameter for expert arrival distribution (user-defined).

8.2.1 XML definition

<!ELEMENT start (triggering-event-list?, precondition-list?)?>

<!ATTLIST start

 arrival (exponential | deterministic

 | uniform | erlang

 | expert | none) "none"

 stream-type (open | close) "open"

 logical-condition CDATA #IMPLIED
 population-size NMTOKEN #IMPLIED
 mean NMTOKEN #IMPLIED
 value NMTOKEN #IMPLIED
 low NMTOKEN #IMPLIED
 high NMTOKEN #IMPLIED
 kernel NMTOKEN #IMPLIED
 expert-distribution CDATA #IMPLIED >

<!ELEMENT triggering-event-list (event)*>

<!ATTLIST triggering-event-list

 composition CDATA "OR" >

8.2.2 Graphical notation

[image: image3.emf]Name

A start point is shown as a filled circle at the beginning of a path, with its hyperedge-name attribute as a label.

8.3 End points

Scenario effects are represented by end points, which describe resulting events and/or post-conditions. An end-point hyperedge should be connected to only one source hyperedge. It has no target hyperedge except when linked to a start or to a waiting-place by a connect hyperedge. A resulting-event-list gives the set of events that result from the completion of the causal scenario path. These events can be composed or selected in many ways (user-defined), but by default all of them are output. The post-condition-list is satisfied once the sequence is completed.

8.3.1 XML definition

<!ELEMENT end-point (resulting-event-list?, postcondition-list?)?>

<!ELEMENT resulting-event-list (event)* >

<!ATTLIST resulting-event-list

 composition CDATA "AND" >

8.3.2 Graphical notation

[image: image4.emf]Name

An end point is shown as a thick bar with its hyperedge-name attribute as a label.

8.4 Events and conditions

Conditions have a name and a user-defined description. No specific syntax or data language is specified at the moment, although in the future conditions should be described in a language compatible with the data-language attribute of the urn-spec element. Conditions can be grouped as lists of preconditions and post-conditions. These conditions can be composed in a user-defined way, but by default they must all be satisfied ("AND" composition). An event is an element with a name and a description.

8.4.1 XML definition

<!ELEMENT postcondition-list (condition)*>

<!ATTLIST postcondition-list

 composition CDATA "AND" >

<!ELEMENT precondition-list (condition)*>

<!ATTLIST precondition-list

 composition CDATA "AND" >

<!ELEMENT condition EMPTY>

<!ATTLIST condition

 name NMTOKEN #REQUIRED

 description CDATA #IMPLIED >

<!ELEMENT event EMPTY>

<!ATTLIST event

 name NMTOKEN #REQUIRED
 description CDATA #IMPLIED >

8.4.2 Graphical notation

There is no graphical notation defined for these elements.

8.5 Responsibility references

A responsibility reference refers, through its resp-id attribute, to a responsibility defined in responsibility-definitions. An optional arrow-position attribute indicates the position of the arrow when the responsibility is dynamic (see dynamic-resp in Section 11). The responsibility-ref hyperedge is connected to only one source hyperedge and to one target hyperedge.

8.5.1 XML definition

<!ELEMENT responsibility-ref EMPTY>

<!ATTLIST responsibility-ref

 resp-id IDREF #REQUIRED
 arrow-position NMTOKEN #IMPLIED >

8.5.2 Graphical notation

[image: image5.emf]Resp-name

……

A responsibility reference is shown as a cross on a path with the resp-name attribute of the referenced responsibility as a label. Responsibilities that are dynamic are shown with arrows, as described in Section 11.

8.6 OR-forks and OR-joins

OR-forks represent on a path where scenarios split as two or more alternative paths. A fork has several target hyperedges and only one source hyperedge. OR-joins capture the merging of two or more independent scenario paths. A join has several source hyperedges and only one target hyperedge. Both elements have an orientation attribute which describes, in degrees (0º for right, 90º for up, etc.), the orientation of the construct. Conditions can be attached to forked paths, as specified in path-branching-spec (Section 8.15).

8.6.1 XML definition

<!ELEMENT fork EMPTY>

<!ATTLIST fork

 orientation NMTOKEN #IMPLIED >

<!ELEMENT join EMPTY>

<!ATTLIST join

 orientation NMTOKEN #IMPLIED >

8.6.2 Graphical notation

[image: image6.emf]Name

An OR-fork is shown as splitting paths (two or more). If specified, the hyperedge-name attribute of this hyperedge is shown as a label.

[image: image7.emf]Name

An OR-join is shown as merging paths (two or more). If specified, the hyperedge-name attribute of this hyperedge is shown as a label.

8.7 AND-forks, AND-joins, and synchronizations

AND-forks represent on a path where scenarios split as two or more concurrent paths (i.e. the concurrency level is increased). AND-joins capture the synchronization of two or more concurrent scenario paths (i.e. the concurrency level is decreased). Both AND-joins and AND-forks are special cases of the synchronization element, which has several source and target hyperedges. An explicit cardinality (1:N, N:1, 2:3, etc.) can also be associated to a synchronization to specify how many instances of the source path need to synchronize and/or how many instances of the target path are created concurrently. This element has an orientation attribute describing its orientation, in degrees (0º for right, 90º for up, etc.).

8.7.1 XML definition

<!ELEMENT synchronization EMPTY>

<!ATTLIST synchronization

 cardinality-source NMTOKEN #IMPLIED
 cardinality-target NMTOKEN #IMPLIED
 orientation NMTOKEN #IMPLIED >

8.7.2 Graphical notation

A synchronization is shown as a thin bar, generally perpendicular to the path(s). If specified, the cardinality is shown in the format cardinality-source:cardinality-target. If specified, the hyperedge-name attribute of this hyperedge can also be shown as a label.

[image: image8.emf]1:5

The figure above presents examples of AND-forks that have one source path and multiple target paths.

[image: image9.emf]5:1

The figure above presents examples of AND-joins that have multiple source paths and one target path.

[image: image10.emf]3:2

The figure above presents examples of general synchronizations with multiple source paths and multiple target paths.

8.8 Loops

Loops are captured explicitly by the loop element. It has two source hyperedges, which represent the original path and the end of the looping path. It also has two target hyperedges, which represent the continuation of the original path and the beginning of the looping path. An exit-condition attribute specifies the condition under which the loop is exit (the looping path may even never been entered). The looping path may contain any other hyperedge, including other loops. This element has an orientation attribute which describes its orientation, in degrees (0º for right, 90º for up, etc.).

8.8.1 XML definition

<!ELEMENT loop EMPTY>

<!ATTLIST loop

 orientation NMTOKEN #REQUIRED
 exit-condition CDATA #IMPLIED >

8.8.2 Graphical notation

[image: image11.emf]…

…

Name

[exit-condition]

The loop is shown as a path element with two incoming path segments followed immediately by two outgoing path segments (similar to an OR-join followed by an OR-fork). If specified, the hyperedge-name attribute of this hyperedge is shown as a label. The exit condition can also be shown between square brackets near the exit path.

8.9 Stubs

Stubs are containers for plug-in maps (i.e. sub-maps). Stubs can be of type static or of type dynamic. While static stubs contain only one plug-in, dynamic stubs may contain multiple plug-ins whose selection can be determined at run-time according to a selection-policy. Such a policy can make use of preconditions, assertions, run-time information, composition operators, etc. in order to select the plug-in(s) to use. Selection policies are described with a (formal or informal) language suitable for the context where they are used. The plug-in maps are sub-maps that describe locally how a feature modifies the parent causal paths. Multiple levels of stubs and plug-ins can be used. Stubs that involve negotiations with components other than the one to which the stub is allocated are called shared stubs.

A stub can have several entry points and exit points, connected respectively to source and target hyperedges. The paths segments that are connected to the stub need to be bound to the paths of the plug-ins in order to express continuity. This is done through explicit binding in plug-in-bindings (Section 10.1). Bindings can be enforced to ensure particular path continuity, even in the presence of a plug-in (see enforce-bindings, Section 10.2). stub-entry-list contains identifiers for stub entry points connected to source hyperedges, whereas stub-exit-list contains identifiers for stub exit points connected to target hyperedges.

Stubs may also contain preconditions, post-conditions, and a specification of service requests for performance requirements (Section 12.1).

8.9.1 XML definition

<!ELEMENT stub (stub-entry-list, stub-exit-list, precondition-list?,

 postcondition-list?, service-request-spec?)>

<!ATTLIST stub

 type (static | dynamic) "static"

 shared (yes | no) "no"

 selection-policy CDATA #IMPLIED>

<!ELEMENT stub-entry-list (stub-entry)+>

<!ELEMENT stub-entry EMPTY>

<!ATTLIST stub-entry

 stub-entry-id ID #REQUIRED
 hyperedge-id IDREF #REQUIRED >

<!ELEMENT stub-exit-list (stub-exit)+>

<!ELEMENT stub-exit EMPTY>

<!ATTLIST stub-exit

 stub-exit-id ID #REQUIRED
 hyperedge-id IDREF #REQUIRED >

8.9.2 Graphical notation

[image: image12.emf]Static_name

……

Dynamic_name

……

Stubs are shown as diamonds connecting input path segments to output path segments. The hyperedge-name attribute of this hyperedge is shown as a label. Diamonds for dynamic stubs are drawn with dotted lines.

[image: image13.emf]Static_shared_name

……

Dynamic_shared_name

……

Shared stubs are shown with two overlapping diamonds, and they can be either static or dynamic.

8.10 Waiting places and timers

A waiting place is an element on a path where the causal flow stops until it is restarted by a specific event coming from the environment or from some other path via a connect element. The triggering-event-list gives the set of events that can restart the causal flow on a path. The precondition-list must be satisfied in order for the flow to restart. A timer is a special waiting place where the flow resumes along the continuation path if the triggering event arrives in a timely fashion, otherwise the flow continues on a timeout path. The wait-type attribute is a user-defined description of the type of waiting (e.g. it could collect the triggering events before the causal flow gets to the waiting place). timeout-variable and logical-condition are attributes used by the path traversal mechanism.

A waiting-place has usually one source hyperedge and one target hyperedge. However, it can have two target hyperedges when there is a timeout path (the latter uses an abort hyperedge, see Section 8.11), and more than one source hyperedges when linked to connect hyperedges (Section 8.12).

8.10.1 XML definition

<!ELEMENT waiting-place (triggering-event-list?, precondition-list?)?>

<!ATTLIST waiting-place

 timer (yes | no) "no"

 wait-type CDATA #IMPLIED

 logical-condition CDATA #IMPLIED
 timeout-variable IDREF #IMPLIED >

8.10.2 Graphical notation

[image: image14.emf]Name

……

Due to their similarity with start points, waiting places are also shown as filled circles, but this time located on a path. The hyperedge-name attribute of this hyperedge is shown as a label.

[image: image15.emf]Name

Timers are shown with a clock symbol. The timeout path that exits from the timer is shown with a broken line, to distinguish it from the initial continuation path.

8.11 Aborts

The abort describes, in an exception-like manner, that one scenario path aborts or disables the flow along another path. It is also used to describe the timeout path exiting from a timer. The abort has one source hyperedge and one target hyperedge, which can be empty segments or stubs. In the case of a timeout path, the source hyperedge is a waiting place (timer) and the target hyperedge is an empty segment.

8.11.1 XML definition

<!ELEMENT abort EMPTY>

8.11.2 Graphical notation

[image: image16.emf]……

……

……

……

……

……

Name

The abort is shown as a broken arrow linking an empty point or a stub to an empty point or a stub. The head of the arrow points towards the target hyperedge. When defined, the hyperedge-name attribute of this hyperedge is shown as a label.

When used to represent a timeout path, the abort is shown as a broken line instead of as an arrow (Section 8.10).

8.12 Connections

Connections describe explicit interactions between two different scenario paths. Connections capture synchronous interactions by linking an end point to a start point or to a waiting place (or timer). Such interactions trigger the target start point or waiting place (or timer). This triggering can also be achieved in-passing (without waiting) through asynchronous interactions. In this case, the source hyperedge is an empty segment. The connection has one source hyperedge (end point or empty segment) and one target hyperedge (start point or waiting place).

8.12.1 XML definition

<!ELEMENT connect EMPTY>

8.12.2 Graphical notation

A connect hyperedge does not have a graphical representation as an element. It is however shown as the juxtaposition of an end point with a start point of waiting place (for synchronous interactions) or as the juxtaposition of an empty path segment with a start point of waiting place (for asynchronous interactions).

8.12.3 Examples

[image: image17.emf]R

The example above shows a synchronous interaction on a waiting place. Responsibility R cannot be performed until the waiting place is triggered by the end point.

[image: image18.emf]R

The example above shows a synchronous interaction on a start point. Responsibility R cannot be performed until the start point is triggered by the end point.

[image: image19.emf]R

The example above shows a synchronous interaction on a timer. Responsibility R cannot be performed until the timer is triggered by the end point, in a timely fashion. If the triggering event does not arrive in time, then the timeout path is followed.

[image: image20.emf]R

The example above shows an asynchronous interaction on a start point. Responsibility R cannot be performed until the start point is triggered in passing by the empty path segment.

8.13 Performance and goal annotations

Specific hyperedges can be use to annotate paths for performance requirements (timestamp-point) or functional goals (goal-tag). These elements have one source hyperedge and one target hyperedge. They are defined with the other elements related to annotations in Section 12.

8.14 Empty segments

An empty segment is used to add characteristics to a path such as the indication of a failure point (where the causal flow could stop for a non-specified reason, which is useful to describe when robustness needs to be modeled), of the direction of the causal flow, or that the responsibilities immediately preceding and following it are shared. Shared responsibilities explicitly imply the existence of a complex communication mechanism (e.g. multiple exchanges of messages satisfying some constraints, protocols, or negotiation rules) used across components.

An empty segment may also specify preconditions for the next hyperedge or post-conditions of the previous hyperedge. An optional path-label can be defined for this element. The empty segment has one source hyperedge (more when linked to an abort) and one target hyperedge (more when linked to a connect).

8.14.1 XML definition

<!ELEMENT empty-segment (precondition-list?, postcondition-list?)?>

<!ATTLIST empty-segment

 path-label CDATA #REQUIRED
 characteristics (failure-point | shared

 | direction-arrow) #IMPLIED

 show-label (yes | no) "no" >

8.14.2 Graphical notation

[image: image21.emf]……

Path-label

An empty element without any associated attribute does not have any specific graphical representation (the conditions are not shown). This hyperedge however has a position and it can be used to add points along a spline, or to allocate a path segment to a component. In all cases, the path-label attribute can be displayed, according to the show-label policy.

[image: image22.emf]……

Failure-name

An empty point can be characterised as a failure point, which is then shown with a ground symbol.

[image: image23.emf]……

R1R2

As shown with the symbol above, an empty point can be used to indicate that two responsibilities (e.g. R1 and R2, usually bounded to two different components) are shared.

[image: image24.emf]In long or ambiguous paths, an empty point can be used to indicate visually the current direction of the causality flow. The direction is shown with an arrow on the path.

8.15 Path branching specification

A path branching specification contains the characteristics by which the output branches (referenced by the next empty-segment) of an existing OR-fork (referenced by fork-id) are selected at run time. The characteristic may be described with logical conditions or preconditions. The branch-condition is a formalization of this characteristic where the condition attached to a branch is specified using a logical expression composed of Boolean constants (T or F) or variables (defined in 13.1.1), potentially connected by logical operators: and ‘&’, or ‘+’, not ‘!’, equal ‘=’, not equal ‘!=’, as well as brackets for indicating precedence ‘()’.

A probability (real number between 0 and 1) can also be assigned to the various branches. The sum of all probabilities for a given OR-fork should be equal to 1. Attributes lx and ly specify the location of the characteristic relative to the location of the referenced fork hyperedge (i.e. -fxlx 1-fx, and -fy ly 1-fy).

The path-branching-spec elements are found after the hyperedge elements in a URN-FR description because the former contain references to the latter.

8.15.1 XML definition

<!ELEMENT path-branching-spec (path-branching-characteristic)*>

<!ATTLIST path-branching-spec

 fork-id IDREF #REQUIRED >

<!ELEMENT path-branching-characteristic EMPTY>

<!ATTLIST path-branching-characteristic

 characteristic CDATA #IMPLIED

 branch-condition CDATA #IMPLIED
 probability NMTOKEN #IMPLIED
 empty-segment IDREF #REQUIRED

 lx NMTOKEN #IMPLIED
 ly NMTOKEN #IMPLIED >

8.15.2 Graphical notation

[image: image25.emf][(cond1) : 0.75]

[(cond2) : 0.25]

Each path branching characteristic is shown in the format [characteristic : probability]. If the characteristics or probabilities are not both defined, then the format can be simplified to [characteristic] or to [:probability].

9 Components and structures

The UCM notation combines behavioural scenarios with structures of abstract components. This section defines the component notation and its role in a structure.

9.1 Component definitions

The component-definitions element, found in definitions, describes the structural entities of a UCM specification, i.e. the components. Components represent, at the requirements level, abstract entities corresponding to actors, processes, objects, containers, agents, and so on. All components have a name, a unique identifier, a description, and a colour (in RGB, 24 bits). Other visual attributes could be added to this element.

Components are divided in two different categories: regular components and pools. Regular components can be of various types, which conform to the component-notation attribute found in urn-spec. In Buhr's notation, which is used by default in the UCM language, the component type can be one of the following:

· Team: default/generic component, used as a container for sub-components of any type.

· Process: active component, which implies the existence a control thread.

· Object: passive component, which is usually controlled by a process.

· Agent: autonomous component, which act on behalf of other components.

All types of regular components also contain the following boolean attributes:

· slot: placeholder for a dynamic component that represents, in a static way, a role that can be populated by actual instances of components at different times.

· protected: the execution of causal paths bound to the component is ruled by a mutual exclusion mechanism.

· replicated: multiple instances of this component exist simultaneously. The number of instances can be set using a replication-factor.

An attribute used for performance analysis may optionally be specified:

· processor-id: reference to a valid processor on which this component executes.

Slots are containers for dynamic components in execution, whereas pools are containers for dynamic components that are not executing. Pools mainly serve the dynamic self-configuring aspect of functional scenarios. A pool can be attributed an arbitrary component type (process, team, object, agent, etc.) or a list of plug-ins usable in dynamic stubs (see the plug-in-pool element in Section 10.1). Pools can only perform responsibilities that are dynamic, for example, to move components or plug-ins in or out a path (Section 11).

9.1.1 XML definition

<!ELEMENT component-definitions (component)*>

<!ELEMENT component ((regular | pool))>

<!ATTLIST component

 component-id ID #REQUIRED
 component-name CDATA #REQUIRED
 description CDATA #IMPLIED
 colour NMTOKEN #IMPLIED >

<!ELEMENT regular EMPTY>

<!ATTLIST regular

 type NMTOKEN "team"

 protected (yes | no) "no"

 slot (yes | no) "no"

 replicated (yes | no) "no"

 replication-factor NMTOKEN "1"

 processor-id IDREF #IMPLIED >

<!ELEMENT pool EMPTY>

<!ATTLIST pool

 type NMTOKEN #REQUIRED >

9.1.2 Graphical notation

[image: image26.emf]Team_NameAgent_NameProcess_NameObject_Name

Component definitions do not have a graphical presentation per se. However, references to these components are shown visually (see Section 9.2). A team is represented with a rectangle, a process with a parallelogram, an object with a rounded-corner rectangle, and an agent as a rectangle with a thick border. The component-name is also displayed on top of the component. If the colour attribute is set, then the component border uses this colour.

[image: image27.emf]SlotProtectedReplicated

The boolean attributes also have a graphical representation. Slot components are shown with a dotted border, protected components with a double-line border, and replicated components as a stack with several instances. All these attributes and their graphical can be used simultaneously.

[image: image28.emf]Pool_Name

A pool is shown as a partially filled container.

9.2 Structure specification

The structure specification is part of a ucm-model and contains references to components, which in turn enumerate the responsibilities and other hyperedges allocated to these components. A component-ref element has a unique identifier and a reference to a valid component-id found in component-definitions. It also includes a responsibility-list, which references valid responsibility reference hyperedges, as well as an other-hyperedge-list, which references valid hyperedges (other than responsibility references) found in the hypergraph. All these referenced hyperedges are said to be bound or allocated to the component. Component references possess the horizontal/vertical (XY) coordinates of the component on the map workspace (fx and fy are real numbers between 0 and 1), together with width and height.

Regular components (e.g. teams) may contain sub-components. A sub-component has a component-parent attribute that references the parent component (a valid component-ref-id). Pools are not allowed to contain sub-components.

A component reference is given a user-defined role, which is a characterization of this particular instance. For example, a component named "User" may be involved in two several roles, such as "Initiator" or "Responder".

Finally, a component reference can be declared as anchored. By default, a non-anchored component reference used in a plug-in implies that it is a sub-component of the parent map component where the stub is located. An anchored component reference used in a plug-in is an explicit indication that it is not a sub-component of the parent map component where the stub is located (hence, it must be declared somewhere else in the UCM specification).

9.2.1 XML definition

<!ELEMENT structure-spec (component-ref)* >

<!ELEMENT component-ref (responsibility-list?, other-hyperedge-list?)?>

<!ATTLIST component-ref

 component-ref-id ID #REQUIRED
 referenced-component IDREF #IMPLIED
 component-parent IDREF #IMPLIED
 role CDATA #IMPLIED
 fx NMTOKEN #REQUIRED
 fy NMTOKEN #REQUIRED
 width NMTOKEN #REQUIRED
 height NMTOKEN #REQUIRED
 anchored (yes | no) "no" >

<!ELEMENT responsibility-list (hyperedge-ref)*>

<!ELEMENT other-hyperedge-list (hyperedge-ref)*>

9.2.2 Graphical notation

[image: image29.emf]Name:Role

Parent

Sub-1

Sub-2

Sub-2.1Sub-2.2

Anchored

Component references use shapes and patterns corresponding to their respective component definitions (Section 9.1). Hyperedge references are allocated to components by superimposing them to component references.

A sub-component is shown as being embedded in its parent component. When non-empty, the role of a component reference is shown in the format component-name:role. Anchored component references are shown with a shadow (e.g. using small oblique lines) under the component.

9.2.3 Example

Drawing path elements on components is a simple means to evaluate alternative candidate architectures. For instance, the simple call connection scenario (Figure 3/Z.152) can be bound to various component structures.

Figure 3/Z.152 [image: image30.emf]c) Scenario path on an IN-based architecture

SNreq

chk

upd

User:BUser:ASwitch

vrfy

ring

b) Scenario path on an agent-based architecture

User:AAgent:AAgent:BUser:B

req

ring

vrfy

updchk

a) Scenario path on a simple architecture

User:ASystemUser:B

req

ring

vrfy

updchk

Basic UCM notation elements

Figure 3/Z.152 shows how the same scenario path can be reused on three different example architectures. The first one (a) is a simplistic solution involving the system and two users (roles A and B). The second architecture (b) splits the responsibilities into two agent instances (roles A and B). The third solution (c) maps the scenario path to a more conventional architecture based on the Intelligent Network model.

10 Binding of plug-ins

Plug-in maps are connected by bindings to stubs in parent maps. This section presents this binding mechanism together with additional constraints that can be imposed on stub to ensure path continuity (enforced bindings).

10.1 Plug-in bindings

A plug-in map is a ucm-model that can be substituted to a stub in a parent map. The plug-in-bindings element contains a list of plug-in bindings and a list of plug-in pools.

The binding between a plug-in (referred to by submap-id) and a stub (stub-id) in its parent map (parent-map-id) is defined by input and output connection lists. An in-connection joins a stub entry identifier (stub-entry-id, a reference to a valid stub-entry-id in the stub) with a start hyperedge from the plug-in (valid hyperedge-id). An out-connection joins a stub exit identifier (stub-exit-id, a reference to a valid stub-exit-id in the stub) with an end point from the same plug-in (valid hyperedge-id).

A plug-in can be bound to multiple stubs, which improves the reusability of sub-maps. Start points and end points in a plug-in do not all have to be bound to a stub. Stub entry points and exit points do not all have to be bound either.

The branch-condition is a formalization of the selection policy where the precondition attached to the bound plug-in is specified using the data model. The precondition is a logical expression composed of Boolean constants (T or F) or variables (defined in 13.1.1), potentially connected by logical operators: and ‘&’, or ‘+’, not ‘!’, equal ‘=’, not equal ‘!=’, as well as brackets for indicating precedence ‘()’. Alternatively, a probability can be used for performance analysis.

A plug-in-pool is an identifier container for plug-ins, where plug-ins can be stored or retrieved. The attribute ucm-model-id is a reference to an existing plug-in map identifier whereas pool-id is a reference to a pool component.

10.1.1 XML definition

<!ELEMENT plug-in-bindings (plug-in-binding*, plug-in-pool*)? >

<!ELEMENT plug-in-binding (in-connection-list?, out-connection-list?)?>

<!ATTLIST plug-in-binding

 parent-map-id IDREF #REQUIRED
 submap-id IDREF #REQUIRED
 stub-id IDREF #REQUIRED

 branch-condition CDATA #IMPLIED
 probability NMTOKEN #IMPLIED >

<!ELEMENT in-connection-list (in-connection)*>

<!ELEMENT in-connection EMPTY>

<!ATTLIST in-connection

 stub-entry-id IDREF #REQUIRED
 hyperedge-id IDREF #REQUIRED >

<!ELEMENT out-connection-list (out-connection)*>

<!ELEMENT out-connection EMPTY>

<!ATTLIST out-connection

 stub-exit-id IDREF #REQUIRED
 hyperedge-id IDREF #REQUIRED >

<!ELEMENT plug-in-pool EMPTY>

<!ATTLIST plug-in-pool

 pool-id IDREF #REQUIRED

 ucm-model-id IDREF #REQUIRED >

10.1.2 Graphical notation

There is no graphical notation defined for the binding of plug-ins. Pools have a graphical representation described in Section 9.1.

10.2 Enforced bindings

Required bindings can be enforced while defining a stub in order to preserve path continuity in the parent map. Continuity in a path-binding element is expressed as a relation between the entry and exit points of a given stub (i.e. stub-entry-id and stub-exit-id must be valid references according to stub stub-id). Plug-ins whose bindings do not satisfy this constraint will not be selectable.

10.2.1 XML definition

<!ELEMENT enforce-bindings (path-binding)*>

<!ATTLIST enforce-bindings

 stub-id IDREF #REQUIRED >

<!ELEMENT path-binding EMPTY>

<!ATTLIST path-binding

 stub-entry-id IDREF #REQUIRED
 stub-exit-id IDREF #REQUIRED >

10.2.2 Graphical notation

There is no graphical notation defined for these elements.

10.2.3 Example

Assume the enforced binding relationship {<IN1, OUT1>} assigned to Originating stub in Figure 2/Z.152(a). Valid plug-ins are required to provide a path that connects IN1 to OUT1. The plug-in TeenLine in Figure 2/Z.152(b) possesses such a path according to its binding relationship ({<IN1, in1>, <OUT1, out1>, <OUT2, out2>}), hence it is a valid plug-in.

[image: image31.emf]defIn1

defOut1

The Default plug-in shown above may or may not satisfy the same enforced binding relationship. The binding relationship {<IN1, defIn1>, <OUT1, defOut1>} is a valid binding of this plug-in (the hyperedge labels are used here to refer to the elements in the relationships, but the relationships are really using identifiers). However, the binding relationship {<IN1, defIn1>, <OUT2, defOut1>} is invalid because is does not enable path continuity between IN1 and OUT1.

11 Responsibility definitions and dynamic responsibilities

Responsibilities are processing tasks (e.g. procedures, functions, actions, etc.) that are referenced by scenarios and by components. They are described in the responsibility-definitions element. A responsibility has a name, a description, and a unique identifier that can be referenced by components (in component-ref) and by paths (in the hyperedge responsibility-ref). Preconditions and post-conditions can be associated to a responsibility. A responsibility may also include a sequence of execution statements (exec-sequence) in a user-defined format. Such an execution sequence can be used for fine-grained modeling purpose, e.g. for performance analysis.

Responsibilities can be defined as being dynamic. Dynamic stubs show how behaviour patterns can evolve at run time, whereas dynamic responsibilities and dynamic components show how a structure of components evolves at run time. A dynamic responsibility (dynamic-resp) performs an action on dynamic components or on plug-ins, in or out of a path. The different types of actions are:

· create: for dynamic components, creates a new component instance on a path (in) or in a slot or a pool of components (out). For plug-ins, this action creates a new plug-in instance on a path (in) or in a stub or a pool of plug-ins (out).

· move: for dynamic components, moves a component instance from a slot or a pool of components to a path (in) or from a path to a slot or a pool (out). For plug-ins, this action moves a plug-in instance from a stub or a pool of plug-ins to a path (in) or from a path to a stub or a pool (out).

· move-stay: similar to move, but moves a reference (i.e. an alias) to the component or plug-in while leaving the original instance in place. The same instance hence become visible in several places at once.

· copy: similar to move, but moves a distinct copy of to the component or plug-in while leaving the original instance in place. The two copies then evolve separately.

· destroy: for dynamic components, deletes a component instance found in a slot or a pool of components (in) or on a path (out). For plug-ins, this action deletes a plug-in instance found in a stub or a pool of plug-ins (in) or on a path (out).

A dynamic responsibility may also be associated to an explicit source pool. The sourcepool attribute is the pool-name of an existing pool in the ucm-model. The relative length of the displayed arrow may also be specified (arrow-length is a real number between 0 and 1).

Responsibilities can also be used for describing performance annotations with the elements data-store-spec and service-request-spec. These elements will be discussed in Section 12
11.1.1 XML definition

<!ELEMENT responsibility-definitions (responsibility)*>

<!ELEMENT responsibility (data-store-spec?, service-request-spec?,

 variable-operation-list?

 (precondition-list?, postcondition-list?)?,

 dynamic-resp?)?>

<!ATTLIST responsibility

 resp-id ID #REQUIRED
 resp-name CDATA #IMPLIED
 exec-sequence CDATA #IMPLIED
 description CDATA #IMPLIED >

<!ELEMENT dynamic-resp EMPTY>

<!ATTLIST dynamic-resp

 type (move | move-stay | create

 | copy | destroy) #REQUIRED
 direction (in | out) #REQUIRED
 sourcepool CDATA #IMPLIED
 arrow-length NMTOKEN #IMPLIED >

11.1.2 Graphical notation

[image: image32.emf]createmovemove-staycopydestroy

–++

Responsibility definitions do not have a graphical presentation per se. However, references to these responsibilities are shown visually. Section 8.5 already presents the graphical notation for references to non-dynamic responsibilities (i.e. a cross on a path).

References to dynamic responsibilities are shown with arrows rather than with crosses. Different types of arrows are used for the five types of actions.

11.1.3 Examples

[image: image33.emf]SlotPoolOfComp

movein

moveout

R

Dynamic responsibilities can be used to populate slots with dynamic components. In this example, a dynamic component is moved from a pool of components to the path (movein) and then moved out of the path to occupy a slot (moveout). This component can then perform responsibility R. This pool acts as a repository for inactive components.

[image: image34.emf]SlotB

destroyAcreateB

SlotA

R2

+

–

R1

The partial scenario shown above presupposes that SlotA is occupied by a dynamic component. After performing R1, this dynamic component is destroyed (destroyA), but the slot remains in order to be populated again at a later time. Then, a new dynamic component is created in SlotB (createB), which in turn performs R2.

[image: image35.emf]ProcBSlotB

move-staycreate

SlotA

+

copydestroy

–

+

ProcA

In this third example, ProcA creates a new dynamic component and puts it on a scenario path. This dynamic component is placed in SlotA but at the same time remains on the path (just like a person can potentially occupy multiple roles at the same time in an organisation). A distinct copy is then placed in SlotB. Finally, ProcB destroys the original dynamic component by removing it from the path. This also means that SlotA is no longer occupied. However, SlotB is still populated by a copy of the original instance and is unaffected by the destroy action.

[image: image36.emf]Stub

PoolOfPlugIns

getplugremove

store

This last example illustrates how dynamic responsibilities can also be used to express mobile and dynamic behaviour. A plug-in is first taken out a pool of plug-ins (get) and then plugged in a dynamic stub (plug). The plug-in is executed (if the selection policy of the stub allows it). It is then removed from the stub (remove) and put back in the pool (store).

12 Annotations

Annotations represent a general mechanism by which structured information can be attached to models, components, and paths. The annotations element is part of a URN specification. In a ucm-model, performance (response time) requirements and functional goals can be described in terms of these annotations. These categories of annotations are described in Sections 12.1 and 12.2 respectively.

12.1 Performance requirements

Performance requirements are composed of response-time requirements attached to scenario paths through timestamps. A timestamp-point is a hyperedge (Section 8) with a visual orientation attribute that describes, in degrees (0º for right, 90º for up, etc.), the orientation of the construct. A timestamp may also indicate whether it is used as a reference to the start of a performance requirement (next) or to its end (previous).

A response-time requirement (response-time-req) contains references to two timestamps (starting and ending timestamp points), a name, and a description. The attribute response-time indicates the required response time between the two timestamps (in s) for a certain percentage of the responses.

Creating performance models from such requirements often necessitates the presence of an execution environment, e.g. devices and storage methods. Such an environment can be described at the beginning of a URN specification in the nfr-definitions. This element contains directories of devices and of data stores. A device has a name, a unique identifier, a description and a type (e.g. processor, disk, DSP, or other). A device may also have a predefined operation time (op-time). The data-store-directory contains data stores and access modes. data-store items and access-mode items have a unique identifier, a name and a description.

To enable performance analysis at the requirements level, responsibilities on a path can be linked to devices and can use data stores and access modes (see Section 11). Responsibility definitions have a data-store-spec, which defines how a data store is accessed through pairs of <reference to data-store, reference to access-mode>, and a service-request-spec, which contains a list of service requests. The latter are composed of a reference to a device (service-type) coupled with a user-defined quantity (request-number).

12.1.1 XML definition

<!ELEMENT annotations (response-time-requirements?, agent-annotations?)>

<!ELEMENT response-time-requirements (response-time-req)*>

<!ELEMENT response-time-req EMPTY>

<!ATTLIST response-time-req

 timestamp1 IDREF #REQUIRED

 timestamp2 IDREF #REQUIRED

 resptime-name CDATA #IMPLIED
 response-time NMTOKEN #REQUIRED
 percentage NMTOKEN #REQUIRED
 description CDATA #IMPLIED >

<!ELEMENT timestamp-point EMPTY>

<!ATTLIST timestamp-point

 orientation NMTOKEN #IMPLIED

 reference (previous | next) #IMPLIED >

<!ELEMENT nfr-definitions (grl-concept-base, device-directory?,

 data-store-directory?)>

<!ELEMENT device-directory (device)*>

<!ELEMENT device EMPTY>

<!ATTLIST device

 device-id ID #REQUIRED
 device-type (processor|disk|dsp|other) #REQUIRED
 device-name CDATA #IMPLIED
 description CDATA #IMPLIED
 op-time NMTOKEN #IMPLIED >

<!ELEMENT data-store-directory (data-store*, access-mode*)?>

<!ELEMENT data-store EMPTY>

<!ATTLIST data-store

 data-store-id ID #REQUIRED
 data-store-item CDATA #IMPLIED
 description CDATA #IMPLIED >

<!ELEMENT access-mode EMPTY>

<!ATTLIST access-mode

 access-mode-id ID #REQUIRED
 access-mode-item CDATA #IMPLIED
 description CDATA #IMPLIED >

<!ELEMENT data-store-spec (data-store-access)*>

<!ELEMENT data-store-access EMPTY>

<!ATTLIST data-store-access

 data-store-id IDREF #REQUIRED
 access-mode-id IDREF #REQUIRED >

<!ELEMENT service-request-spec (service-request)*>

<!ELEMENT service-request EMPTY>

<!ATTLIST service-request

 service-type IDREF #REQUIRED
 request-number CDATA #REQUIRED >

12.1.2 Graphical notation

[image: image37.png]A timestamp point is shown as an arrowhead pointed towards the path where it is located. The hyperedge-name attribute of this hyperedge is shown as a label.

Because they are mostly definitions and annotations, the other elements presented in this section do not have a graphical annotation.

12.2 Functional goals

The second type of annotation considered in UCMs relates to functional requirements goals in agent systems. An fr-goal contains two references to goal tags (starting and ending goal tags), preconditions and post-conditions, a unique identifier, a name, and a description. A goal-tag is similar in nature to a timestamp point: it is a hyperedge with an orientation attribute. However, the purpose of goal tags is to indicate on a path where explicit functional requirements goals are defined.

12.2.1 XML definition

<!ELEMENT agent-annotations (fr-goal-list)>

<!ELEMENT fr-goal-list (fr-goal)*>

<!ELEMENT fr-goal (precondition-list?, postcondition-list?)>

<!ATTLIST fr-goal

 start-point IDREF #REQUIRED
 end-point IDREF #REQUIRED
 fr-goal-id ID #IMPLIED
 fr-goal-name CDATA #IMPLIED
 description CDATA #IMPLIED >

<!ELEMENT goal-tag EMPTY>

<!ATTLIST goal-tag

 orientation NMTOKEN #IMPLIED >

12.2.2 Graphical notation

[image: image38.emf]Name

……

A goal tag is shown as small square with a thick border located on a path. The hyperedge-name attribute of this hyperedge is shown as a label.

Because they are mostly annotations, the other elements presented in this section do not have a graphical annotation

13 Dynamic semantics

Full-fledged formal languages often have a well-defined dynamic semantics. Whether a single dynamic semantics is desirable in a requirements language remains a question for further study. If one is defined, it should be done in a way that would enable simple transformations towards other languages such as UML, MSC, SDL, and TTCN.

Whatever form the dynamic semantics of UCM will take, it should not deviate much from the intuitive understanding and traversal of UCM paths. Two aspects of the UCM language, the scenario definitions and the path traversal mechanism, constrain the possible dynamic interpretations of UCM. The remainder of this section first describes scenario definitions in more detail and then gives the requirements for a path traversal mechanism imposed by the intuitive understanding and traversal of UCM paths.

13.1 Scenario Definitions

Scenario definitions make use of path variables and conditions to identify individual scenarios in an integrated collection of UCMs. Conditions allow the explicit definition of otherwise hidden causal dependencies of path segments, thereby reducing the number of path segments that can be combined to create useful and sensible end-to-end scenarios. Once defined, such scenarios can be grouped or used for highlighting and animating specific paths or for generating other representations such as Message Sequence Charts or TTCN test cases.

13.1.1 Path variables

The path data model is defined using Boolean global variables that are initialized at the beginning of a scenario and may be changed during the scenario by responsibilities. A path-variable-list defines all available variables with a name (name) and a unique identifier (boolvar-id). A reference count (ref-count) keeps track of how often the path variable is used. Currently, only responsibilities can modify a path variable. The list of operations that modify variables at a responsibility is defined by variable-operation-list. Each operation (variable-operation) changes the value of one path variable (variable-id) to either a fixed value or to the evaluation of a logical expression (value).

13.1.1.1 XML definition

<!ELEMENT path-variable-list (boolean-variable)*>

<!ELEMENT boolean-variable EMPTY >

<!ATTLIST boolean-variable

 name NMTOKEN #REQUIRED
 boolvar-id ID #REQUIRED

 ref-count NMTOKEN #REQUIRED >

<!ELEMENT variable-operation-list (variable-operation)*>

<!ELEMENT variable-operation EMPTY >

<!ATTLIST variable-operation

 variable-id IDREF #REQUIRED
 value CDATA #REQUIRED >

13.1.1.2 Graphical notation

No graphical notation is required for these DTD elements.

13.1.2 Scenarios and groups

An individual scenario (scenario-definition) can be defined by providing a name (name), a description (description), and a list of start points (scenario-start), by initializing a list of Boolean variables (variable-init), and by defining the postconditions of the scenario (postcondition). Each scenario-start references a start point (start-id) on a UCM (map-id). Each variable-init defines the initial value (value) of a path variable (variable-id). Similarly, each condition defines the expected value (value) of a path variable (variable-id) at the end of a scenario. Scenario definitions can be grouped for management purpose under scenario-group, and all groups are found under scenario-list. A scenario-group may have a name (name) and a description (description).

13.1.2.1 XML definition

<!ELEMENT scenario-list (scenario-group)* >

<!ELEMENT scenario-group (scenario-definition)* >

<!ATTLIST scenario-group

 name NMTOKEN #REQUIRED
 description CDATA #IMPLIED >

<!ELEMENT scenario-definition ((scenario-start)*,

 (variable-init)*, (postcondition)*) >

<!ATTLIST scenario-definition

 name NMTOKEN #REQUIRED
 description CDATA #IMPLIED >

<!ELEMENT scenario-start EMPTY >

<!ATTLIST scenario-start

 map-id IDREF #REQUIRED
 start-id IDREF #REQUIRED >

<!ELEMENT variable-init EMPTY >

<!ATTLIST variable-init

 variable-id IDREF #REQUIRED
 value (T|F) #REQUIRED >

<!ELEMENT postcondition EMPTY >

<!ATTLIST postcondition

 variable-id IDREF #REQUIRED
 value (T|F) #REQUIRED >

13.1.2.2 Graphical notation

No graphical notation is required for these DTD elements.

13.2 Path Traversal Mechanism

The path traversal mechanism traverses a UCM by starting at one or more parallel start points as defined by the user. The actual path to be traversed is determined by the initial value of path variables as defined by the user and the changes to these values at responsibilities during the traversal. The path traversal mechanism moves from one path element to the next if continuation criteria are met. Each UCM path element has specific criteria. The traversal ends when the last end point is reached. If the traversal gets stuck before that a warning shall be issued.

The path traversal mechanism as defined below assumes a sequential implementation of parallel paths. Furthermore, the choice of which parallel path to follow at any given time may be made at random since UCMs do not provide timing information sufficient enough for a more realistic simulation of parallel paths. If the path traversal mechanism encounters a non-deterministic choice point, a warning shall be issued. The traversal, however, may continue possibly by interacting with the user or by expanding multiple scenarios.

At this moment, the requirements for the path traversal mechanism (Table 1/Z.152) cover all path elements (with the exception of the abort element) but do not cover any structural elements such as component instances. Asynchronous triggering of a waiting place (i.e. waiting places connected to empty points) is also not covered. Aborts and asynchronous triggering could be added to the requirements fairly easily. In the case of structural elements, however, issues surrounding the identification of new component instances and references to existing components have to be solved before requirements for the path traversal mechanism can be formulated. A similar issue exists for plug-in instances and also needs to be solved. The requirements do not explicitly address the situation where the same start point is triggered multiple times during a scenario. Finally, the recognition of implicit loops is currently not a requirement for the path traversal mechanism.

The path traversal mechanism is the basis for many advanced applications of UCMs. Most of these applications require additional capabilities. Scenario highlighting and animation can be done with the basic path traversal mechanism. The ability to associate path elements with sequence numbers indicating the order in which the path elements were traversed, however, makes repeated highlighting and animation more efficient. The generation of Message Sequence Charts requires the ability to deal with component information and a well-nestedness transformation/warning mechanism. The generation of Layered Queuing Networks requires the ability to deal with arrival and device characteristics, device demands, data access modes, and response-time requirements. Test case generation requires the ability to deal with information about controllable and observable activities. None of these additional capabilities, however, is currently a requirement for the path traversal mechanism.

Table 1/Z.152 Requirements for Path Traversal Mechanism

	ID
	Requirement

	1
	Path Traversal shall start at 1 to N parallel scenario start points as defined by the user (scenario-start).

	2
	Path Traversal shall start with initial values (true, false, or undetermined) for each path data variable as defined by the user (variable-init).

	3
	Path Traversal shall move from path element A to path element B if

a) Path Traversal is currently visiting path element A, and

b) there is a direct connection from A to B (hyperedge-connection), and

c) the path continuation condition of path element A to path element B is fulfilled.

	4
	The path continuation condition for a start point shall be fulfilled if the logical expression for its guard evaluates to true (logical-condition of start).

	5
	The path continuation condition for end points not directly connected to waiting places or timers shall be always fulfilled.

	6
	The path continuation condition for a responsibility shall be always fulfilled.

	7
	The path continuation condition for an OR-fork shall be fulfilled if the path continuation condition of exactly one branch of the OR-fork is fulfilled.

	8
	The path continuation condition for a branch of an OR-fork shall be fulfilled if the logical expression for the branch evaluates to true (branch-condition of path-branching-characteristic).

	9
	The path continuation condition for an OR-join shall be always fulfilled.

	10
	The path continuation condition for each branch of an AND-fork shall be always fulfilled.

	11
	The path continuation condition for an AND-join shall be fulfilled if Path Traversal is currently visiting the AND-join for all of its incoming paths.

	12
	The path continuation condition for a loop shall be fulfilled if the path continuation condition of exactly one branch is fulfilled (either the loop branch or the exit branch).

	13
	The path continuation condition for the loop branch shall be fulfilled if the logical expression for the loop exit evaluates to false (exit-condition of loop).

	14
	The path continuation condition for the exit branch shall be fulfilled if the logical expression for the loop exit evaluates to true (exit-condition of loop).

	15
	The path continuation condition for a static stub shall be always fulfilled.

	16
	The path continuation condition for a dynamic stub shall be fulfilled if the path continuation condition of exactly one plug-in of the dynamic stub is fulfilled.

	17
	The path continuation condition for a plug-in of a dynamic stub shall be fulfilled if the logical expression for the selection policy of the plug-in evaluates to true (branch-condition of plug-in-binding).

	18
	The path continuation condition for an end point and a waiting place connected directly with each other shall be fulfilled if

d) Path Traversal is currently visiting the end point and the waiting place and

e) the logical expression for the guard of the waiting place evaluates to true (logical-condition of waiting-place).

	19
	The path continuation condition for a waiting place shall be fulfilled if the logical expression for its guard evaluates to true (logical-condition of waiting-place).

	20
	The path continuation condition for an end point and a timer connected directly with each other shall be fulfilled if

f) Path Traversal is currently visiting the end point and the timer and

g) the path continuation condition for the non-timeout path of the timer is fulfilled.

	21
	The path continuation condition for a timer shall be fulfilled if exactly one of the following cases occurs:

h) The path continuation condition for the non-timeout path is fulfilled.

i) The path continuation condition for the timeout path is fulfilled.

	22
	The path continuation condition for a non-timeout path shall be fulfilled if

j) the timer’s timeout variable is set to false (timeout-variable of waiting-place) and

k) the timer’s guard evaluates to true (logical-condition of waiting-place).

	23
	The path continuation condition for a timeout path shall be fulfilled if

l) the timer’s timeout variable is set to true (timeout-variable of waiting-place) and

m) a timeout path exists for the timer.

	24
	The path continuation condition for an empty point shall be always fulfilled.

	25
	Path Traversal shall execute the value assignment statements of a responsibility (variable-operation-list) if the path continuation condition for the responsibility is fulfilled.

	26
	Path Traversal shall execute the value assignment statements of a responsibility in the order defined by the user.

	27
	Path Traversal shall update the values of the path data variables immediately after executing one value assignment statement.

	28
	Path Traversal shall evaluate a logical expression to undetermined if any value within the logical expression evaluates to undetermined.

	29
	Path Traversal shall stop if it cannot move to another path element from any of the currently visited path elements.

	30
	Path Traversal shall regard the values of the path variables at the time path traversal stopped as postconditions of the traversed scenario.

	31
	Path Traversal shall issue a warning if Path Traversal has stopped, and

n) Path Traversal is currently visiting one or more path elements other than end points or

o) Path Traversal is currently visiting one or more end points connected directly to waiting places or timers or

p) the postconditions of the traversed scenario do not match the postconditions defined by the user.

14 Static semantic constraints and well-formedness rules

This section presents a set of static semantic constraints and well-formedness rules, related to identifier references and hyperedge connectivity that UCM specifications need to satisfy. Constraints on the structure of a URN specification already enforced by the URN DTD are not repeated in this section. Note that the following set of constraints is sound but not exhaustive: an unsatisfied constraint demonstrates that the UCM specification is not well formed, whereas some UCM specifications could be not well formed even when all these constraints are satisfied.

14.1 References to identifiers

In any XML DTD, attributes of type IDREF must refer to an existing attribute of type ID. Table 2/Z.152 further refines this constraint by specifying the exact attribute referenced by attributes of type IDREF.

Table 2/Z.152 Constraints on referenced identifiers

	Element
	IDREF Attribute
	Referenced Element
	Referenced ID Attribute
	Additional Constraints

	component-ref
	component-parent
	component-ref
	component-ref-id
	Both elements in the same structure-spec

	
	referenced-component
	component
	component-id
	

	data-store-access
	access-mode-id
	access-mode
	access-mode-id
	

	
	data-store-id
	data-store
	data-store-id
	

	enforce-bindings
	stub-id
	hyperedge
	hyperedge-id
	Both elements in the same hypergraph

	fr-goal
	start-point
	hyperedge
	hyperedge-id
	hyperedge is a goal-tag

	
	end-point
	hyperedge
	hyperedge-id
	hyperedge is a goal-tag

	hyperedge-connection
	source-hyperedge
	hyperedge
	hyperedge-id
	Both elements in the same hypergraph

	hyperedge-ref
	hyperedge-id
	hyperedge
	hyperedge-id
	Both elements in the same hypergraph

	in-connection
	hyperedge-id
	hyperedge
	hyperedge-id
	hyperedge is a start from another ucm-model in plug-in-maps

	
	stub-entry-id
	stub-entry
	stub-entry-id
	

	out-connection
	hyperedge-id
	hyperedge
	hyperedge-id
	hyperedge is an end-point from another ucm-model in plug-in-maps

	
	stub-exit-id
	stub-exit
	stub-exit-id
	

	path-binding
	stub-entry-id
	stub-entry
	stub-entry-id
	stub-entry and stub-exit belong to same stub

	
	stub-exit-id
	stub-exit
	stub-exit-id
	

	path-branching-characteristic
	empty-segment
	hyperedge
	hyperedge-id
	hyperedge is an empty-segment

	path-branching-spec
	fork-id
	hyperedge
	hyperedge-id
	hyperedge is a fork

	plug-in-binding
	parent-map-id
	ucm-model
	ucm-model-id
	

	
	stub-id
	hyperedge
	hyperedge-id
	hyperedge is a stub

	
	submap-id
	ucm-model
	ucm-model-id
	ucm-model is in plug-in-maps

	plug-in-pool
	ucm-model-id
	ucm-model
	ucm-model-id
	ucm-model is in plug-in-maps

	
	pool-id
	component
	component-id
	component is a pool

	postcondition
	variable-id
	boolean-variable
	boolvar-id
	

	regular
	processor-id
	device
	device-id
	device-type is processor

	response-time-req
	timestamp1
	hyperedge
	hyperedge-id
	hyperedge is a timestamp-point

	
	timestamp2
	hyperedge
	hyperedge-id
	hyperedge is a timestamp-point

	responsibility-ref
	resp-id
	responsibility
	resp-id
	

	scenario-start
	map-id
	ucm-model
	ucm-model-id
	

	
	start-id
	hyperedge
	hyperedge-id
	hyperedge is a start on ucm-model map-id

	service-request
	service-type
	device
	device-id
	

	stub-entry
	hyperedge-id
	hyperedge
	hyperedge-id
	hyperedge is an empty-segment

	stub-exit
	hyperedge-id
	hyperedge
	hyperedge-id
	hyperedge is an empty-segment

	variable-operation
	variable-id
	boolean-variable
	boolvar-id
	

	variable-init
	variable-id
	boolean-variable
	boolvar-id
	

	waiting-place
	timeout-variable
	boolean-variable
	boolvar-id
	

14.2 Well-formed rules for hypergraphs

Table 3/Z.152 defines the constraints on how hyperedges can be connected together in order to form a well-formed hypergraph. For each type of hyperedge, the number of source/target hyperedges for normal path connections and for interpath connections are specified, together with the types allowed. In general, empty-segment hyperedges are required between any two hyperedges of the other types, except for the connect and abort hyperedges. A cardinality of the form x-N means that the minimum is x and there is no maximum.

Table 3/Z.152 Constraints on hyperedge connectivity

	Hyperedge type
	Normal path connections
	Interpath connections

	
	# Sources
	# Targets
	# Sources
	# Targets

	start
	0
	1 (empty-segment)
	0-N (connect)
	0

	end-point
	1 (empty-segment)
	0
	0
	0-N (connect)

	responsibility-ref
	1 (empty-segment)
	1 (empty-segment)
	0
	0

	fork
	1 (empty-segment)
	2-N (empty-segment)
	0
	0

	join
	2-N (empty-segment)
	1 (empty-segment)
	0
	0

	synchronization
	1-N (empty-segment)
	1-N (empty-segment)
	0
	0

	loop
	2 (empty-segment)
	2 (empty-segment)
	0
	0

	stub
	1-N (empty-segment)
	1-N (empty-segment)
	0-N (abort)
	0-N (abort)

	waiting-place
	1 (empty-segment)
	1 (empty-segment),

plus 0-1 (abort)
for timeout path
	0-N (connect)
	0

	abort
	0
	0
	1 (stub or
emtpy-segment)
	1 (stub or
emtpy-segment)

	
	1 (waiting-place/timer)
	1 (empty-segment)
	0
	0

	connect
	0
	0
	1 (end-point
or empty-segment)
	1
(start or waiting-place)

	timestamp-point
	1 (empty-segment)
	1 (empty-segment)
	0
	0

	goal-tag
	1 (empty-segment)
	1 (empty-segment)
	0
	0

	empty-segment
	1
(any hyperedge except end-point and connect)
	1
(any hyperedge except start, abort and connect)
	0-N (abort)
	0-N (connect or abort)

15 Compliance statement

The following table describes the requirements for URN-FR as described in Z.150, together with an assessment of how well the UCM notation conforms to these requirements.

Table 4/Z.152 UCM compliance table

	ID
	Requirement
	Type
	R/O
	Depends On
	Conf
Status
	 Explanation

	00100
	Specify the set of input events at scenario start point
	FR
	R
	
	C
	

	00200
	Specify the set of output events at scenario end point
	FR
	R
	
	C
	

	00300
	Specify preconditions at scenario start points
	FR
	R
	
	C
	

	00400
	Specify post-conditions at scenario end points
	FR
	R
	
	C
	

	00500
	Identify input sources, that is, whether the sources are human or machine
	FR
	R
	
	N
	

	00600
	Identify output sources, that is, whether the sources are human or machine
	FR
	R
	
	N
	

	00700
	Specify system operations in terms of a causal flow of responsibilities
	FR
	R
	
	C
	

	00800
	Specify alternative courses of action within a scenario
	FR
	R
	
	C
	

	00900
	Specify repetitive action within a scenario
	FR
	R
	
	C
	

	01000
	Specify parallel courses of action within a scenario
	FR
	R
	
	C
	

	01100
	Specify synchronization within a scenario
	FR
	R
	
	C
	

	01200
	Specify synchronization between scenarios
	FR
	R
	
	C
	

	01300
	Specify a lengthy scenario by way of a root map and references to child maps; child maps may have children
	FR
	R
	
	C
	

	01301
	Specify preconditions at the entry points to a child map
	FR
	R
	
	C
	

	01302
	Specify post-conditions at the exit points from a child map
	FR
	R
	
	C
	

	01400
	Group related scenarios
	FR
	R
	
	C
	

	01450
	Specify individual scenarios
	FR
	R
	
	C
	

	01500
	Specify feature interactions
	FR
	R
	
	C
	

	01600
	Specify scenarios without reference to components
	FR
	R
	
	C
	

	01700
	Specify scenarios with reference to components and the allocation of responsibilities to components
	FR
	R
	
	C
	

	01800
	Specify scenarios with reference to Commercial-Off-The-Shelf (COTS) components
	FR
	R
	
	C
	

	01900
	Specify scenarios with reference to conceptual components
	FR
	R
	
	C
	

	02000
	Specify the behaviour of the system’s environment
	FR
	R
	
	C
	Same requirements as for specifying scenarios

	02100
	Elicit requirements, that is, use the notation to reason about domain knowledge
	FR
	R
	
	C
	

	02200
	Cross-reference operationalizations in the NFR model to responsibilities in the FR model
	B
	R
	
	C
	Through attributes and non-intentional elements which are responsibilities.

	02300
	Cross-reference performance constraints identified in the NFR model to responsibilities or scenarios in the FR model
	B
	R
	
	C
	Through attributes of performance softgoal and non-intentional elements which are responsibilities and scenarios.

Annex A
UCM Document Type Definition

<!-- This part from Z.150 / URN -->

<!ELEMENT urn-spec (definitions?, urn-nfr-spec?, urn-fr-spec?,

 annotations?)>

<!ATTLIST urn-spec

 spec-id ID #REQUIRED
 dtd-version NMTOKEN #REQUIRED
 spec-name CDATA #IMPLIED
 component-notation NMTOKEN "Buhr-UCM"

 data-language NMTOKEN "none"

 width NMTOKEN "1320"

 height NMTOKEN "1100"

 description CDATA #IMPLIED >

<!ELEMENT definitions (component-definitions?, responsibility-definitions?,

 nfr-definitions?)>

<!-- This part from Z.151 / GRL -->

<!ELEMENT nfr-definitions (element-definitions, device-directory?,

 data-store-directory?)>

<!-- This part is new, from Z.152 / UCM -->

<!ELEMENT urn-fr-spec (path-variable-list?, root-maps, plug-in-maps?,

 plug-in-bindings?, scenario-list?)>

<!ELEMENT root-maps (ucm-model)+>

<!ELEMENT plug-in-maps (ucm-model)*>

<!ELEMENT ucm-model (path-spec?, structure-spec?)>

<!ATTLIST ucm-model

 ucm-model-id ID #REQUIRED
 ucm-model-name CDATA #REQUIRED
 title CDATA "No title"

 description CDATA #IMPLIED >

 <!ELEMENT path-spec (hypergraph)?>

<!ELEMENT hypergraph (hyperedge*, hyperedge-connection*,

 path-branching-spec*, enforce-bindings*)>

<!ELEMENT hyperedge ((start | end-point | responsibility-ref |

 fork | join | synchronization | loop | stub |

 waiting-place | abort | connect | timestamp-point |

 goal-tag | empty-segment)) >

<!ATTLIST hyperedge

 hyperedge-id ID #REQUIRED
 hyperedge-name CDATA #IMPLIED
 fx NMTOKEN #IMPLIED
 fy NMTOKEN #IMPLIED
 lx NMTOKEN #IMPLIED
 ly NMTOKEN #IMPLIED
 description CDATA #IMPLIED >

<!ELEMENT hyperedge-connection (hyperedge-ref)*>

<!ATTLIST hyperedge-connection

 source-hyperedge IDREF #REQUIRED >

<!ELEMENT hyperedge-ref EMPTY>

<!ATTLIST hyperedge-ref

 hyperedge-id IDREF #REQUIRED >

<!ELEMENT start (triggering-event-list?, precondition-list?)?>

<!ATTLIST start

 arrival (exponential | deterministic

 | uniform | erlang

 | expert | none) "none"

 stream-type (open | closed)
 "open"

 logical-condition CDATA #IMPLIED
 population-size NMTOKEN #IMPLIED
 mean NMTOKEN #IMPLIED
 value NMTOKEN #IMPLIED
 low NMTOKEN #IMPLIED
 high NMTOKEN #IMPLIED
 kernel NMTOKEN #IMPLIED
 expert-distribution CDATA #IMPLIED >

<!ELEMENT triggering-event-list (event)*>

<!ATTLIST triggering-event-list

 composition CDATA "OR" >

<!ELEMENT end-point (resulting-event-list?, postcondition-list?)?>

<!ELEMENT resulting-event-list (event)* >

<!ATTLIST resulting-event-list

 composition CDATA "AND" >

<!ELEMENT postcondition-list (condition)*>

<!ATTLIST postcondition-list

 composition CDATA "AND" >

<!ELEMENT precondition-list (condition)*>

<!ATTLIST precondition-list

 composition CDATA "AND" >

<!ELEMENT condition EMPTY>

<!ATTLIST condition

 name NMTOKEN #REQUIRED

 description CDATA #IMPLIED >

<!ELEMENT event EMPTY>

<!ATTLIST event

 name NMTOKEN #REQUIRED
 description CDATA #IMPLIED >

<!ELEMENT responsibility-ref EMPTY>

<!ATTLIST responsibility-ref

 resp-id IDREF #REQUIRED
 arrow-position NMTOKEN #IMPLIED >

<!ELEMENT fork EMPTY>

<!ATTLIST fork

 orientation NMTOKEN #IMPLIED >

<!ELEMENT join EMPTY>

<!ATTLIST join

 orientation NMTOKEN #IMPLIED >

<!ELEMENT synchronization EMPTY>

<!ATTLIST synchronization

 cardinality-source NMTOKEN #IMPLIED
 cardinality-target NMTOKEN #IMPLIED
 orientation NMTOKEN #IMPLIED >

<!ELEMENT loop EMPTY>

<!ATTLIST loop

 orientation NMTOKEN #REQUIRED
 exit-condition CDATA #IMPLIED >

<!ELEMENT stub (stub-entry-list, stub-exit-list, precondition-list?,

 postcondition-list?, service-request-spec?)>

<!ATTLIST stub

 type (static | dynamic) "static"

 shared (yes | no) "no"

 selection-policy CDATA #IMPLIED>

<!ELEMENT stub-entry-list (stub-entry)+>

<!ELEMENT stub-entry EMPTY>

<!ATTLIST stub-entry

 stub-entry-id ID #REQUIRED
 hyperedge-id IDREF #REQUIRED >

<!ELEMENT stub-exit-list (stub-exit)+>

<!ELEMENT stub-exit EMPTY>

<!ATTLIST stub-exit

 stub-exit-id ID #REQUIRED
 hyperedge-id IDREF #REQUIRED >

<!ELEMENT waiting-place (triggering-event-list?, precondition-list?)?>

<!ATTLIST waiting-place

 timer (yes | no) "no"

 wait-type CDATA #IMPLIED

 logical-condition CDATA #IMPLIED
 timeout-variable IDREF #IMPLIED >

<!ELEMENT abort EMPTY>

<!ELEMENT connect EMPTY>

<!ELEMENT empty-segment (precondition-list?, postcondition-list?)?>

<!ATTLIST empty-segment

 path-label CDATA #REQUIRED
 characteristics (failure-point | shared

 | direction-arrow) #IMPLIED

 show-label (yes | no) "no" >

<!ELEMENT path-branching-spec (path-branching-characteristic)*>

<!ATTLIST path-branching-spec

 fork-id IDREF #REQUIRED >

<!ELEMENT path-branching-characteristic EMPTY>

<!ATTLIST path-branching-characteristic

 characteristic CDATA #IMPLIED
 branch-condition CDATA #IMPLIED
 probability NMTOKEN #IMPLIED
 empty-segment IDREF #REQUIRED
 lx NMTOKEN #IMPLIED
 ly NMTOKEN #IMPLIED >

<!ELEMENT component-definitions (component)*>

<!ELEMENT component ((regular | pool))>

<!ATTLIST component

 component-id ID #REQUIRED
 component-name CDATA #REQUIRED
 description CDATA #IMPLIED
 colour NMTOKEN #IMPLIED >

<!ELEMENT regular EMPTY>

<!ATTLIST regular

 type NMTOKEN "team"

 protected (yes | no) "no"

 slot (yes | no) "no"

 replicated (yes | no) "no"

 replication-factor NMTOKEN "1"

 processor-id IDREF #IMPLIED >

<!ELEMENT pool EMPTY>

<!ATTLIST pool

 type NMTOKEN #REQUIRED >

<!ELEMENT structure-spec (component-ref)* >

<!ELEMENT component-ref (responsibility-list?, other-hyperedge-list?)?>

<!ATTLIST component-ref

 component-ref-id ID #REQUIRED
 referenced-component IDREF #IMPLIED
 component-parent IDREF #IMPLIED
 role CDATA #IMPLIED
 fx NMTOKEN #REQUIRED
 fy NMTOKEN #REQUIRED
 width NMTOKEN #REQUIRED
 height NMTOKEN #REQUIRED
 anchored (yes | no) "no" >

<!ELEMENT responsibility-list (hyperedge-ref)*>

<!ELEMENT other-hyperedge-list (hyperedge-ref)*>

<!ELEMENT plug-in-bindings (plug-in-binding*, plug-in-pool*)? >

<!ELEMENT plug-in-binding (in-connection-list?, out-connection-list?)?>

<!ATTLIST plug-in-binding

 parent-map-id IDREF #REQUIRED
 submap-id IDREF #REQUIRED
 stub-id IDREF #REQUIRED

 branch-condition CDATA #IMPLIED
 probability NMTOKEN #IMPLIED >

<!ELEMENT in-connection-list (in-connection)*>

<!ELEMENT in-connection EMPTY>

<!ATTLIST in-connection

 stub-entry-id IDREF #REQUIRED
 hyperedge-id IDREF #REQUIRED >

<!ELEMENT out-connection-list (out-connection)*>

<!ELEMENT out-connection EMPTY>

<!ATTLIST out-connection

 stub-exit-id IDREF #REQUIRED
 hyperedge-id IDREF #REQUIRED >

<!ELEMENT plug-in-pool EMPTY>

<!ATTLIST plug-in-pool

 pool-id IDREF #REQUIRED

 ucm-model-id IDREF #REQUIRED >

<!ELEMENT enforce-bindings (path-binding)*>

<!ATTLIST enforce-bindings

 stub-id IDREF #REQUIRED >

<!ELEMENT path-binding EMPTY>

<!ATTLIST path-binding

 stub-entry-id IDREF #REQUIRED
 stub-exit-id IDREF #REQUIRED >

<!ELEMENT responsibility-definitions (responsibility)*>

<!ELEMENT responsibility (data-store-spec?, service-request-spec?,

 variable-operation-list?,

 (precondition-list?, postcondition-list?)?,

 dynamic-resp?)?>

<!ATTLIST responsibility

 resp-id ID #REQUIRED
 resp-name CDATA #IMPLIED
 exec-sequence CDATA #IMPLIED
 description CDATA #IMPLIED >

<!ELEMENT dynamic-resp EMPTY>

<!ATTLIST dynamic-resp

 type (move | move-stay | create

 | copy | destroy) #REQUIRED
 direction (in | out) #REQUIRED
 sourcepool CDATA #IMPLIED
 arrow-length NMTOKEN #IMPLIED >

<!ELEMENT annotations (response-time-requirements?, agent-annotations?)>

<!ELEMENT response-time-requirements (response-time-req)*>

<!ELEMENT response-time-req EMPTY>

<!ATTLIST response-time-req

 timestamp1 IDREF #REQUIRED

 timestamp2 IDREF #REQUIRED

 resptime-name CDATA #IMPLIED
 response-time NMTOKEN #REQUIRED
 percentage NMTOKEN #REQUIRED
 description CDATA #IMPLIED >

<!ELEMENT timestamp-point EMPTY>

<!ATTLIST timestamp-point

 orientation NMTOKEN #IMPLIED

 reference (previous | next) #IMPLIED >

<!ELEMENT device-directory (device)*>

<!ELEMENT device EMPTY>

<!ATTLIST device

 device-id ID #REQUIRED
 device-type (processor|disk|dsp|other) #REQUIRED
 device-name CDATA #IMPLIED
 description CDATA #IMPLIED
 op-time NMTOKEN #IMPLIED >

<!ELEMENT data-store-directory (data-store*, access-mode*)?>

<!ELEMENT data-store EMPTY>

<!ATTLIST data-store

 data-store-id ID #REQUIRED
 data-store-item CDATA #IMPLIED
 description CDATA #IMPLIED >

<!ELEMENT access-mode EMPTY>

<!ATTLIST access-mode

 access-mode-id ID #REQUIRED
 access-mode-item CDATA #IMPLIED
 description CDATA #IMPLIED >

<!ELEMENT data-store-spec (data-store-access)*>

<!ELEMENT data-store-access EMPTY>

<!ATTLIST data-store-access

 data-store-id IDREF #REQUIRED
 access-mode-id IDREF #REQUIRED >

<!ELEMENT service-request-spec (service-request)*>

<!ELEMENT service-request EMPTY>

<!ATTLIST service-request

 service-type IDREF #REQUIRED
 request-number CDATA #REQUIRED >

<!ELEMENT agent-annotations (fr-goal-list)>

<!ELEMENT fr-goal-list (fr-goal)*>

<!ELEMENT fr-goal (precondition-list?, postcondition-list?)>

<!ATTLIST fr-goal

 start-point IDREF #REQUIRED
 end-point IDREF #REQUIRED
 fr-goal-id ID #IMPLIED
 fr-goal-name CDATA #IMPLIED
 description CDATA #IMPLIED >

<!ELEMENT goal-tag EMPTY>

<!ATTLIST goal-tag

 orientation NMTOKEN #IMPLIED >

<!ELEMENT path-variable-list (boolean-variable)*>

<!ELEMENT boolean-variable EMPTY >

<!ATTLIST boolean-variable

 name NMTOKEN #REQUIRED
 boolvar-id ID #REQUIRED
 ref-count NMTOKEN #REQUIRED >

<!ELEMENT variable-operation-list (variable-operation)*>

<!ELEMENT variable-operation EMPTY >

<!ATTLIST variable-operation

 variable-id IDREF #REQUIRED
 value CDATA #REQUIRED >

<!ELEMENT scenario-list (scenario-group)* >

<!ELEMENT scenario-group (scenario-definition)* >

<!ATTLIST scenario-group

 name NMTOKEN #REQUIRED
 description CDATA #IMPLIED >

<!ELEMENT scenario-definition ((scenario-start)*,

 (variable-init)*, (postcondition)*) >

<!ATTLIST scenario-definition

 name NMTOKEN #REQUIRED
 description CDATA #IMPLIED >

<!ELEMENT scenario-start EMPTY >

<!ATTLIST scenario-start

 map-id IDREF #REQUIRED
 start-id IDREF #REQUIRED >

<!ELEMENT variable-init EMPTY >

<!ATTLIST variable-init

 variable-id IDREF #REQUIRED
 value NMTOKEN #REQUIRED >

<!ELEMENT postcondition EMPTY >

<!ATTLIST postcondition

 variable-id IDREF #REQUIRED
 value (T|F) #REQUIRED >

Annex B
Use Case Maps Tutorial

TO BE UPDATED
This informative annex contains tutorials and illustrative examples that supplement the specification of the Use Case Map notation. This notation is used for describing causal relationships between responsibilities, which may potentially be bound to underlying organizational structures of abstract components. The resulting visual scenarios are called Use Case Maps (UCMs) or simply maps. Responsibilities are generic and can represent actions, activities, operations, tasks to perform, and so on. Components are also generic and can represent software entities (objects, processes, databases, servers, functional entities, network entities, etc.) as well as non-software entities (e.g. users, actors, processors). The relationships are said to be causal because they involve concurrency and partial orderings of activities and because they link causes (e.g., preconditions and triggering events) to effects (for example post-conditions and resulting events). In a way, UCMs show related use cases in a map-like diagram.

UCMs uses behaviour as a concrete, first-class architectural concept. Maps usually emphasize the most relevant, interesting, and critical functionalities of the system, even when little design information is available. With the UCM notation, scenarios are expressed above the level of messages exchanged between components; hence they are not necessarily bound to a specific underlying structure. UCMs provides a path-centric view of system functionalities and improves the level of reusability of scenarios. The notation also enables scenario integration at various levels, architectural reasoning, and description of dynamic behaviour and architectures.

In Stage 1 documents as defined in I.130 and Q.65, requirements usually suffer from heavy instabilities, whereas scenarios and potential component topologies are volatile. UCMs fit well in approaches that intend to bridge the gap between requirements and an abstract system design (Stage 2 document as defined in I.130 and Q.65), where a tentative distribution of system behaviour over a structure is being introduced. The generation of Stage 2 documents, which usually contain information flows or Message Sequence Charts, from UCM descriptions will hence briefly be addressed. Stage 3 documents as defined in I.130 and Q.65 describe the various protocols and procedures involved in the support of the MSCs described in the previous stage.

This tutorial illustrates some useful applications of the UCM notation to the following steps of systems and standards development processes:

· Description of causal scenarios and architectures (Section B.1)

· Architectural reasoning (Sections B.1 and B.2)

· Refinements with Message Sequence Charts (Section B.2)

· Scenario integration (Section B.3)

· Description of highly dynamic systems (Section B.4)

Several telecommunication services and features will serve as illustrative examples. The last section of this tutorial provides two possible path traversal mechanisms as examples (Section B.5).

B.1 Description of causal scenarios and architectures
B.1.1 Description of a simplified call screening scenario

The UCM notation is used to describe causal scenarios when little design information is available. The following example is based on a simplified version of a call-screening feature in a Wireless Intelligent Network system. Figure 4/Z.152 shows a map where an incoming call is tentatively initiated (IncomingCall, or IC). This causes a screening function to be executed according to the subscriber’s policies. In this map, two alternative results are considered. If the call initiator is on the receiver’s screening list (condition OnList), then an announcement is played (PlayBlockAnnounce, or PBA) and the call is blocked (CalledBlocked, or CB). Otherwise (condition NotOnList), there is no special treatment (NormalAlerting, or NA) and the call is accepted (CallSetup, or CS). In order for the figures and labels to be more concise, the rest of the section will use abbreviations as labels and will not display the conditions on the OR-fork.

Figure 4/Z.152 [image: image39.emf]Name

……

UCM description of a simplified call screening scenario

A UCM starts with a triggering event or a pre-condition (filled circle labeled IC) and ends with one or more resulting events or post-conditions (bars), in this case CS or CB. A route is a scenario that evolves on a path linking an initial cause to a final effect. Intermediate responsibilities (S, NA, and PBA) are activated along the way to form routes such as <IC, S, NA, CS>. Think of responsibilities as tasks to be performed. The notation allows for alternative paths (the OR-Fork in the figure), concurrent paths, exception paths, timers, stubs with plug-ins, and synchronous or asynchronous interactions between paths.

Such maps have proved to be very useful in Stage 1 descriptions of service functionalities. Their principal emphasis is on causality and responsibilities, without any reference to messages, system components, or component states. Yet, they represent useful and powerful tools for the support of the thinking process and the evaluation of functional alternatives. This causal dependence between responsibilities should be documented as early as possible in the design process, before this information gets lost among the details of the behaviour of individual components. This is especially true of concurrent, communicating, and distributed systems.

B.1.2 Evaluation of architectural alternatives for functional entities

UCM paths can be bound to various structures of components, which leads to a visual integration of scenarios and architecture in a single view. The UCM notation supports the reuse of scenarios when the underlying structure is modified or refined, even across architectural domains. For instance, Figure 5/Z.152(a) and Figure 5/Z.152(b) illustrate two sample structures of functional entities (FEs), which are the components of IN’s distributed functional plane. In this example, FEs are shown as processes, i.e. with parallelograms. The example scenario (Figure 4/Z.152) is bound differently to each collection of FEs. The same scenario can also be bound to the same structure, but in a different way, as shown in Figure 5/Z.152(c).

Figure 5/Z.152 [image: image40.emf]IncomingCall

(IC)

CallSetup

(CS)

CallBlocked

(CB)

Screening (S)

NormalAlerting (NA)

PlayBlockAnnounce (PBA)

[

NotOnList

]

[

OnList

]

A causal scenario path bound to different structures of FEs

In Stage 2 descriptions, different potential structures could undergo some evaluation, hence enabling architectural reasoning. Scenarios described in terms of wired components, such as Message Sequence Charts or as sequence diagrams in the Unified Modelling Language (UML), would need to be rebuilt as soon as there is a change in the underlying structure, because the functionalities are tightly bound to how the structure looks like. UCMs scenarios are more reusable and require simpler modifications, consisting only of a new binding between the responsibilities and the components.

B.2 Refinements with Message Sequence Charts

When extracting MSC-like scenarios directly from informal requirements, as it is often done in conventional system development, many design decisions become buried in the details of the scenarios. For instance, Wireless Intelligent Network MSCs are often described in terms of network entities, which contain various functional entities. Design decisions such as the allocation of UCM responsibilities to functional entities (the logical components in the distributed functional model) and the allocation of functional entities to network entities (the physical entities in the network reference model) are lost. Assuming that such a standard does not impose a specific mapping of functional entities to network entities, different vendors who build network entities may use different mappings. Designers must reverse-engineer information and scenarios that would be explicit in a UCM view where responsibilities and other constructs are bound to functional entities. This delays the design and implementation phases and leads to multiple interoperability problems. Such problems are unfortunately common in standards.

By using a UCM view, many issues related to messages, protocols, communication constraints, and structural evolutions (e.g. from one version of the structure to the next) can be abstracted, and the focus can be put on intended functionalities and on reusable causal scenarios in their structural context. This section aims to illustrate the kind of design decisions that one needs to take and document when generating MSCs from UCM descriptions.

B.2.1 MSC refinements of bound maps

Bound UCMs can serve as a basis for the generation of correct MSCs in Stage 2 documents, provided that additional information related to communication constraints, protocols, and parameters are defined to refine inter-responsibliity causal relationships into inter-component message exchanges. Many MSCs could be valid according to a UCM, as long as the intended causal relationships between the responsibilities are satisfied. The following example uses Figure 5/Z.152(c), duplicated in Figure 6/Z.152(a), as a starting point.

Figure 6/Z.152(b) is a potential MSC extracted from the route <IC, S, NA, CS>, where the exchange of messages is minimal. Responsibilities are performed by the entities to which they are bound, so S and NA are actions performed by FE2. In this example, input and output events, captured by the start point IC and the end point CS, are interpreted as messages from and to the environment. The causal path linking FE1 to FE2 is refined by an appropriate exchange of messages between these two entities (e.g. the simple message m1). Different protocols could be used at this point, and the flow of data would need to be specified as well.

Figure 6/Z.152(c) is a potential MSC extracted from the route <IC, S, PBA, CB>. As implied by the multiple messages between FE2 to FE4, complex protocols or negotiation mechanisms could be involved between two given entities.

Figure 6/Z.152 [image: image41.emf](a) First structure(b) Second structure(c) Different mapping of UCM

CS

S

IC

CB

 PBA

NA

CS

IC

CB

 PBA

NA

 S

IC

 S

CB

 PBA

CS

 NA

FE5

FE1

FE6

FE1FE3

FE2

FE4

FE1FE3

FE2

FE4

Generation of potential MSCs from scenario paths bound to a structure of FEs

B.2.2 Structural alternatives for functional entities and network entities

Moving from Stage 2 documents to Stage 3 documents requires the functional entities to be bound to network entities (NEs), the components of IN’s physical plane. Again, different allocations are possible, and design decisions have to be made and documented. Two collections of NEs lead to different mappings in Figure 7/Z.152(a) and Figure 7/Z.152(b). In Figure 7/Z.152(c), the structure remains the same as in Figure 7/Z.152(b), but FE2 and FE3 are allocated differently.

Figure 7/Z.152 [image: image42.emf](a) UCM to FEs

FE1FE2

IC

CS

m1

FE1FE2FE4

CB

IC

m2

m4

(b) A MSC for <IC,S,NA,CS>(c) A MSC for <IC,S,PBA,CB>

m3

m5

S

NA

S

PBA

CS

S

IC

CB

 PBA

NA

FE1FE3

FE2

FE4

Different bindings of functional entities to network entities

B.2.3 MSC refinements of bound maps with constrained communication mechanisms

The bound map in Figure 8/Z.152(a) results from the allocation of responsibilities to FEs described in Figure 5/Z.152(c) and from the allocation of FEs to NEs described in Figure 7/Z.152(c). Components may have restricted access to each other. This type of constraint is often defined by communication channels or interfaces linking the components. In this example, NE2 is allowed to communicate with both NE1 and NE3, but NE1 and NE3 cannot communicate directly. This is shown by the links between the various components (not part of the URN notation). Such constraints are often described in Stage 3 documents, hence paving the way towards protocols and procedures for the final architecture.

At this level, a new collection of MSCs can be generated, this time in terms of network entities. Figure 8/Z.152(b) is a potential MSC extracted from the route <IC, S, NA, CS>, where the exchange of messages is minimal. Notice how NE2 is used to refine the causal relationship between IC and S: NE1 is not allowed to send messages directly to NE3, but messages can be forwarded through NE2. Similarly, Figure 8/Z.152(c) is a potential MSC extracted from the route <IC, S, PBA, CB>, this time with a complex negotiation mechanism between NE2 and NE3, which may result from the negotiation between FEs as suggested by Figure 6/Z.152(c). Again, those MSCs are just potential candidates. Many other MSCs could refine the same map according to different choices in the communication constraints and protocols.

Figure 8/Z.152 [image: image43.emf](a) First structure(b) Second structure(c) Different mapping of FEs

FE2

NE2

FE4

NE4

FE1

NE1

FE3

NE3

FE3

NE3

FE4

FE1

NE1

FE2

NE2

FE2

NE3

FE4

FE1

NE1

FE3

NE2

Generation of MSCs from scenario paths bound to a constrained structure of NEs

The types of decision discussed in this section are only relevant in a late stage of the development process. Yet, many standards and system descriptions include MSCs based on network entities (or the equivalent) in Stage 2, and sometimes even in preliminary Stage 1 documents, hence skipping many decision steps. This hurts the development process by not separating concerns, by narrowing the number of potential implementations too soon, and by not documenting any of the requirements and design decisions needed to enable adaptation and evolution.

B.3 Integration of scenarios

Scenarios are often described in isolation. However, at some point in time, a view where all scenarios are integrated together becomes important for analysis, for consistency checking, for the detection of interactions, and for the construction of more detailed models. This section contains a second example (unrelated to the call screening feature discussed so far) where three features, described as individual maps based on a simplified call initiation, are integrated into one map with sub-maps (plug-ins).

B.3.1 Simplified call initiation scenario

The following call initiation scenario is bound to a structure with two types of components, User and Agent, which can both assume one of two roles: originating (O) or terminating (T). The originating user initiates a call through the start point req (Figure 9/Z.152). The terminating agent verifies whether the terminating user is busy or idle (vrfy). When idle, the terminating user status is updated in its agent (upd) and a resulting ringing event occurs at the terminating user side (ring). Simultaneously, this results in an event at the originating user side (sig) signaling a prepared ringback reply (prb). When busy, a busy reply is prepared (pb) and a corresponding signaling event results at the originating user side.

Figure 9/Z.152 [image: image44.emf]FE2

NE3

FE4

FE1

NE1

FE3

NE2

CS

S

IC

(a) UCM to FEs to NEs

CB

 PBA

NA

NE1NE2NE3

IC

CS

m7

m6

NE1NE2NE3

CB

IC

m9

m8

m11

(b) A MSC for <IC,S,NA,CS>(c) A MSC for <IC,S,PBA,CB>

m10

m12

S

NA

S

PBA

Simplified call initiation UCM

This UCM already integrates multiple sequential scenarios through path elements like OR-forks and AND-forks.

B.3.2 Three features described in isolation

Often, telecommunications features are described in terms of an underlying basic call. The following three features extend the simplified basic call UCM to include new functionalities or prevent existing ones.

The first feature is the originating call screening (OCS), described in Figure 10/Z.152. The originating agent possesses a screening list object (OCSlist) that is checked (chk) to determine whether the call should be allowed or denied. When allowed, the call initiation scenario continues. When denied, a denied reply is prepared (pd) and a corresponding signaling event results at the originating user side.

Figure 10/Z.152 [image: image45.emf]User:OAgent:OAgent:TUser:T

req

sig

ring

vrfy

[idle]

[

busy

]

pb

upd

prb

Originating call screening (OCS) feature UCM

The UCM in Figure 11/Z.152 describes the TeenLine feature, located in the originating agent. This feature checks the current time (chkTime) to determine whether the call is being initiated at a specific time of the day. When in the predefined range, TeenLine requires a valid personal identification number (PIN) to be provided in a timely fashion for the call initiation to continue. If an invalid PIN is provided, or if a time-out occurs, then a denied reply is prepared (pd).

Figure 11/Z.152 [image: image46.emf]User:OAgent:OAgent:TUser:T

req

sig

ring

vrfy

[idle]

[

busy

]

pb

upd

prb

chk

[allowed]

OCSlist

[

denied

]

pd

 TeenLine feature UCM

Figure 12/Z.152 presents the third feature, Call number delivery (CND), located at the terminating side. This feature displays (disp) the name of the calling party, i.e. the originating user.

Figure 12/Z.152 [image: image47.emf]User:OAgent:OAgent:TUser:T

req

sig

ring

vrfy

[idle]

[

busy

]

pb

upd

prb

chkTime

[notInRange]

[

inRange

]

pd

getPIN

[invalid]

[valid]

Call number delivery (CND) feature UCM

B.3.3 Integrated scenarios

UCMs can help structuring and integrating scenarios in various ways, e.g. sequentially, as alternatives (with OR-forks/joins) or concurrently (with AND-forks/joins). However, one of the most interesting constructs for scenario integration is certainly the stub. While static stubs contain only one sub-map (plug-in), dynamic stubs may contain multiple sub-maps whose selection can be determined at run-time according to a selection policy. Such a policy can make use of preconditions, assertions, run-time information, composition operators, etc. in order to select the plug-in(s) to use. Selection policies are described with a (formal or informal) language suitable for the context where they are used. The plug-in maps are sub-maps that describe locally how a feature modifies the basic behaviour. Multiple levels of stubs and plug-ins can be used.

A potential root map that integrates the three features seen so far is presented in Figure 13/Z.152. Stub SO contains the originating features whereas stub ST contains a single plug-in (illustrating scenario decomposition), which in turn will possess a stub (SD) for the terminating features. Each of these stubs includes plug-ins that represent how the call initiation reacts in the presence or absence of features.

Figure 13/Z.152 [image: image48.emf]User:OAgent:OAgent:TUser:T

req

sig

ring

vrfy

[idle]

[

busy

]

pb

upd

prb

disp

 Root map for integrated call initiation

Five plug-ins are presented in Figure 14/Z.152. These sub-maps are connected directly or indirectly to the Root map of Figure 13/Z.152 in order to support the features and the basic call initiation. By default, these plug-ins act locally in the component where the parent stub is located. If a component outside the containing component is referenced by the plug-in (e.g. User:T in Figure 14/Z.152(e)), then this component needs to be declared as anchored. Such components have a shadow at the bottom to indicate visually that they are already defined elsewhere.

Figure 14/Z.152 [image: image49.emf]User:OAgent:OAgent:TUser:T

req

sig

ring

STSO

IN1

OUT1

OUT2

OUT4

IN2

OUT3

Plug-ins for the various features

The binding relationships, which are used to connect plug-ins to stubs, are enumerated in Table 5/Z.152. Through these relationships, it is possible to reconstruct the initial UCMs:

· Simplified call initiation (Figure 9/Z.152): Default in SO, Terminating in ST, Default in SD.

· OCS feature (Figure 10/Z.152): OCS in SO, Terminating in ST, Default in SD.

· TeenLine feature (Figure 11/Z.152): TeenLine in SO, Terminating in ST, Default in SD.

· CND feature (Figure 12/Z.152): Default in SO, Terminating in ST, CND in SD.

Table 5/Z.152 Binding relationships for integrated view

	Parent map
	Stub
	Plug-in map
	Figure 14/Z.152
	Binding relationship

	Root
	SO
	Default
	(a)
	{<IN1, Din1>, <OUT1, Dout1>}

	
	
	TeenLine
	(b)
	{<IN1, Tin1>, <OUT1, Tout1>, <OUT2, Tout2>}

	
	
	OCS
	(c)
	{<IN1, Oin1>, <OUT1, Oout1>, <OUT2, Oout2>}

	
	ST
	Terminating
	(d)
	{<IN2, in2>, <OUT3, out3>, <OUT4, out4>}

	Terminating
	SD
	Default
	(a)
	{<IN3, Din1>, <OUT5, Dout1>}

	
	
	CND
	(e)
	{<IN3, Cin1>, <OUT5, Cout1>}

Adding features to such UCM collections is often achieved by creating new plug-ins for the existing stubs, or by adding new stubs containing either new plug-ins or instances of existing plug-ins. In all cases, the selection policies need to be updated appropriately.

B.3.4 Feature interactions and selection policies

Dynamic stubs contain selection policies used to determine which plug-in(s) should be selected at run-time. For stub SD, a potential policy could be as simple as this condition:

IF subscribed(User:T, CND)

THEN select CND

ELSE select Default

ENDIF
However, things are slightly more complex for stub SD, which contains three plug-ins. Both OCS and TeenLine can easily have priority over Default, but there exists an interaction between these two features that requires a resolution. Stubs and selection policies tend to localize the places on scenarios where undesirable feature interactions can occur, hence simplifying the analysis and the resolution of these undesirable interactions. Among other things, they can be used to specify priorities of some features over others. For instance, TeenLine could be given precedence over OCS in stub SO. One feature could even prevent another feature from being executed. Many spurious interactions between features are thus avoided by structuring and integrating the scenarios in the proper context.

In our particular example, one potential policy could be:

IF subscribed(User:O, OCS)

THEN
IF subscribed(User:O, TeenLine)

THEN select TeenLine ; select OCS

ELSE select OCS

ENDIF

ELSE
IF subscribed(User:O, TeenLine)

THEN select TeenLine

ELSE select Default

ENDIF

ELSE select Default

ENDIF
Although it works in this case, this type of policy does not scale well when there is a large number of plug-ins. Mechanisms based on assertions and concurrent negotiation between plug-ins have the potential of coping with this issue.

B.4 Description of highly dynamic systems

Highly dynamic systems are usually difficult to represent using a static notation. Section B.3 already presented how dynamically "pluggable" behaviour can be described using dynamic stubs. However, describing self-modifying architecture and mobile behaviour remains a major challenge. The following two examples present how UCMs can be used to address this issue.

B.4.1 Description of dynamic architectures

This example makes use of slots, pools, and dynamic responsibilities to demonstrate the expressiveness of these concepts in a dynamic architecture context. A hypothetical telephony system is composed of a telephone switch, containing multiple devices, and of a provisioning site responsible for the creation, storage, and retrieval of device handlers (Figure 15/Z.152). The switch contains devices, which perform telephony operations, and a driver process, which requests and installs required device handlers. The provisioning site contains a server process that decodes requests for new handlers, and a supplier process where new device handlers are created. These handlers are stored for future use in a repository, represented in the map by a pool of objects.

Figure 15/Z.152 [image: image50.emf]d) TERMINATING plug-in map

in2

out4

out3

vrfy

upd

[idle]

[

busy

]

pbprb

SD

IN3OUT5

e) CND plug-in map

Cin1

Cout1

disp

User:T

b) TEENLINE plug-in map

Tin1

Tout2

Tout1

chkTime

[notInRange]

[

inRange

]

pd

getPIN

[invalid]

[valid]

Din1Dout1

a) DEFAULT plug-in map

Oin1

Oout2

Oout1

chk

[allowed]

[denied]

pd

OCSlist

c) OCS plug-in map

Dynamic device handler map

The scenario path on the left can be interpreted intuitively as follows. Upon the shipment of a new device, Supplier creates a new handler object and then stores it in the Handlers pool. At this point, this new handler is available to the switch. The scenario path on the right indicates that once the real device is connected to the switch, the Driver can request the appropriate handler from the provisioning site (this is in a sense similar to a plug-and-play device). The Server decodes the request and gets the handler object from the pool. This object is then installed in the Device handler slot, a placeholder that cannot do anything until a component gets installed. At this point, the installed device handler can prepare whatever operation is requested from a number of devices, which then get to perform the operation. The use of the handler can be repeated until no operations are required, and then the device(s) become idle.

B.4.2 Description of mobile behaviour

Dynamic responsibilities and pools can also be used to describe mobile behaviour that can be created, stored, retrieved, and installed in dynamic stubs. Figure 16/Z.152 illustrates this concept through an example that involves a telephone switch and a service creation environment. Similar to Figure 15/Z.152, the path on the left enables the creation and storage of new services (plug-ins) that are made available to the switch. The latter can dynamically request such service from the service creation environment, plug it in a dynamic stub, and initiate the execution of this service (in PerformService).

Figure 16/Z.152 [image: image51.png]Service creation and execution map

The UCM notation thus proposes powerful constructs (dynamic stubs, dynamic responsibilities, pools, and slots) to capture and describe, in a concise way, complex scenarios that involve highly dynamic behaviour and architectures. This enables the representation of systems that involve agents and mobile code, two important features of the upcoming generation of distributed systems in general and telecommunications systems in particular.

B.5 Two Examples of Path Traversal Mechanisms

Any path traversal mechanism constrains the dynamic semantics of UCMs. The following examples show the traversal of two single UCM scenarios with two different path traversal mechanisms, a depth-first approach and a breadth-first approach. The first UCM example is well-nested whereas the second UCM example is not.

B.5.1 First Example

The UCM Example #1 (Figure 17/Z.152) consists of two start points (A and B), one end point (R), 14 responsibilities (1 to 14), two synchronization points ((and (), and two choice points ((and (). X is the only path variable required by the choice points. The branch conditions for choice point (are “X = true” for the right branch and “X = false” for the left branch. The branch conditions for choice point (are the same as for choice point (.

Figure 17/Z.152 [image: image52.png]UCM Example #1

A UCM scenario requires a name, a list of start points, a list of initialized path variables, and postconditions. The name of the first scenario is FIRST. It starts at start point A, initializes path variable X to true, and its postcondition for X is also true.

Depth-First Approach

The path traversal mechanism starts traversing the UCM scenario at start point A. The mechanism traverses all path elements until it reaches the first AND-fork. At this point, one parallel path is chosen (3) and the second one (4) is put on a FILO stack. The traversal continues until synchronization point (where the traversal gets stuck. Note that the traversal mechanism chose the right branch of choice point (according to the initial value of path variable X and that the traversal mechanism chose path (7) at the second AND-fork and put (8) on the stack (see Figure 18/Z.152).

Figure 18/Z.152 [image: image53.png]Depth First - Stuck at Synchronization Point (
When the path traversal mechanism gets stuck, an element is removed from the stack and the path traversal mechanism continues from that element. Thus, (8) is removed from the stack and path traversal continues until synchronization point (is reached. At this point, however, the path continuation condition for synchronization point (is fulfilled and the parallel paths can be collapsed (see Figure 19/Z.152 and Figure 20/Z.152).

Figure 19/Z.152 [image: image54.png]Depth First - Before Collapsing Parallel Paths (
Figure 20/Z.152 [image: image55.png]Depth First - After Collapsing Parallel Paths (
Path traversal then continues from synchronization point (until it gets stuck at synchronization point ((see Figure 21/Z.152).

Figure 21/Z.152 [image: image56.png]Depth First - Stuck at Synchronization Point (
Once again, an element (4) is removed from the stack and path traversal continues until synchronization point (is reached. At this point, however, the path continuation condition for synchronization point (is fulfilled and the parallel paths can be collapsed (see Figure 22/Z.152 and Figure 23/Z.152).

Figure 22/Z.152 [image: image57.png]Depth First - Before Collapsing Parallel Paths (
Figure 23/Z.152 [image: image58.png]Depth First - After Collapsing Parallel Paths (
Finally, the path traversal mechanism continues from synchronization point (until it reaches the end point (see Figure 24/Z.152).

Figure 24/Z.152 [image: image59.png]Final Result of Depth First Path Traversal of UCM Example #1

Breadth-First Approach

The path traversal mechanism starts traversing the UCM scenario at start point A. The mechanism traverses all path elements until it reaches the first AND-fork. At this point, one parallel path is chosen (3) and the second one (4) is put on a FIFO stack. The traversal continues until synchronization point (where the traversal gets stuck. Note that the traversal mechanism chose the right branch of choice point (according to the initial value of path variable X and that the traversal mechanism chose path (7) at the second AND-fork and put (8) on the stack (see Figure 25/Z.152).

Figure 25/Z.152 [image: image60.png]Breadth First - Stuck at Synchronization Point (
The path traversal mechanism removes an element from the stack - in this case the element that was put on the stack first - and the path traversal mechanism continues from that element. Thus, (4) is removed from the stack and path traversal continues until the traversal gets stuck at synchronization point ((see Figure 26/Z.152).

Figure 26/Z.152 [image: image61.png]Breadth First - Stuck at Synchronization Point (
Once again, an element (8) is removed from the stack and path traversal continues until synchronization point (is reached. At this point, however, the path continuation condition for synchronization point (is fulfilled and the parallel paths can be collapsed (see Figure 27/Z.152 and Figure 28/Z.152).

Figure 27/Z.152 [image: image62.png]Breadth First - Before Collapsing Parallel Paths (
Figure 28/Z.152 [image: image63.png]Breadth First - After Collapsing Parallel Paths (
Path traversal then continues from synchronization point (until it reaches synchronization point (and the parallel paths can be collapsed (see Figure 29/Z.152 and Figure 30/Z.152).

Figure 29/Z.152 [image: image64.png]Breadth First - Before Collapsing Parallel Paths (
Figure 30/Z.152 [image: image65.png]Breadth First - After Collapsing Parallel Paths (
Finally, the path traversal mechanism continues from synchronization point (until it reaches the end point (Figure 31/Z.152).

Figure 31/Z.152 [image: image66.png]Final Result of Breadth First Path Traversal of UCM Example #1

Due to the well-nestedness of Example #1, the breadth-first and depth-first path traversals both produce the same result, which preserves internal concurrency.

B.5.2 Second Example

The UCM Example #2 (Figure 32/Z.152) is not well-nested. It consists of two start points (A and B), two end points (R and S), 13 responsibilities (1 to 13), two synchronization points ((and (), and two choice points ((and (). Y is the only path variable required by the choice points. The branch conditions for choice point (are “Y = true” for the right branch and “Y = false” for the left branch. The branch conditions for choice point (are the same as for choice point (.

Figure 32/Z.152 [image: image67.png]UCM Example #2

The name of the second scenario is SECOND. It starts at start points A and B, initializes path variable Y to true, and its postcondition for Y is also true.

Depth-First Approach

The path traversal mechanism chooses start point A to start traversing the UCM scenario. Since this scenario has two start points, the second start point (B) is put on a FILO stack. The mechanism traverses all path elements until it reaches the first AND-fork. At this point, one parallel path is chosen (e.g. 2) and the second one (3) is put on the stack. The traversal continues until synchronization point (where the traversal gets stuck. Note that the traversal mechanism chose the right branch of choice point (according to the initial value of path variable Y and that the traversal mechanism chose path (6) at the second AND-fork and put (7) on the stack (see Figure 33/Z.152).

Figure 33/Z.152 [image: image68.png]Depth First - Stuck at Synchronization Point (
When the path traversal mechanism gets stuck, an element is removed from the stack and the path traversal mechanism continues from that element. Thus, (7) is removed from the stack and path traversal continues until the traversal gets stuck at synchronization point ((see Figure 34/Z.152).

Figure 34/Z.152 [image: image69.png]Depth First - Stuck at Synchronization Point (
Once again, an element (3) is removed from the stack and path traversal continues until end point R is reached. Then, the next element (B) is removed from the stack and path traversal continues until synchronization point (is reached. At this point, however, the path continuation condition for synchronization point (is fulfilled and the parallel paths can be collapsed (see Figure 35/Z.152 and Figure 36/Z.152). Note that in this case the collapsing of parallel paths is ambiguous since the UCM is not well-nested.

Figure 35/Z.152 [image: image70.png]Depth First - Before Collapsing Parallel Paths (
Figure 36/Z.152 [image: image71.png]Depth First - After Collapsing Parallel Paths (
Path traversal then continues from synchronization point (until it reaches synchronization point (and the parallel paths can be collapsed (see Figure 37/Z.152 and Figure 38/Z.152).

Figure 37/Z.152 Depth First - Before Collapsing Parallel Paths (
Figure 38/Z.152 Depth First - After Collapsing Parallel Paths (
Finally, the path traversal mechanism continues from synchronization point (until it reaches the end point S (see Figure 39/Z.152).

Figure 39/Z.152 Final Result of Depth First Path Traversal of UCM Example #2

Breadth-First Approach

The path traversal mechanism chooses start point A to start traversing the UCM scenario. Since this scenario has two start points, the second start point (B) is put on a FIFO stack. The mechanism traverses all path elements until it reaches the first AND-fork. At this point, one parallel path is chosen (2) and the second one (3) is put on the stack. The traversal continues until synchronization point (where the traversal gets stuck. Note that the traversal mechanism chose the right branch of choice point (according to the initial value of path variable Y and that the traversal mechanism chose path (6) at the second AND-fork and put (7) on the stack (see Figure 40/Z.152).

Figure 40/Z.152 Breadth First - Stuck at Synchronization Point (
The path traversal mechanism removes an element from the stack - in this case the element that was put on the stack first - and the path traversal mechanism continues from that element. Thus, (B) is removed from the stack and path traversal continues until the traversal gets stuck at synchronization point ((see Figure 41/Z.152).

Figure 41/Z.152 Breadth First - Stuck at Synchronization Point (
Once again, an element (3) is removed from the stack and path traversal continues until end point R is reached. Then, the next element (7) is removed from the stack and path traversal continues until synchronization point (is reached. At this point, however, the path continuation condition for synchronization point (is fulfilled and the parallel paths can be collapsed (see Figure 42/Z.152 and Figure 43/Z.152). Note that in this case the collapsing of parallel paths is ambiguous since the UCM is not well-nested.

Figure 42/Z.152 Breadth First - Before Collapsing Parallel Paths (
Figure 43/Z.152 Breadth First - After Collapsing Parallel Paths (
Path traversal then continues from synchronization point (until it reaches synchronization point (and the parallel paths can be collapsed (see Figure 44/Z.152 and Figure 45/Z.152).

Figure 44/Z.152 Breadth First - Before Collapsing Parallel Paths (
Figure 45/Z.152 Breadth First - After Collapsing Parallel Paths (
Finally, the path traversal mechanism continues from synchronization point (until it reaches end point S (see Figure 46/Z.152).

Figure 46/Z.152 Final Result of Breadth First Path Traversal of UCM Example #2

Appendix I
Tool issues

TO BE DONE.
This informative appendix is intended to include lessons learned and issues observed while using a prototype tool supporting the Use Case Map (UCM) notation.

Currently, UCM support is provided by the UCM Navigator tool (UCMNav). UCMNav, developed at Carleton University. This tool is available at http://www.UseCaseMaps.org/tools/ucmnav/. More information on how to use the tool to create UCM models can be found on the UCM Web page: http://www.UseCaseMaps.org/. In particular, the paper “Deriving Message Sequence Charts from Use Case Maps Scenario Specifications” (http://www.UseCaseMaps.org/pub/sdl01-miga.pdf) illustrates how to define and use scenario definitions in UCMNav in order to generate Message Sequence Charts automatically.

Bibliography

This section contains references to books, journal papers and conferences papers dealing with Use Case Maps (UCMs) and topics related to UCMs.

Amyot, D., Andrade, R., Logrippo, L., Sincennes, J., and Yi, Z. (1999) “Formal Methods for Mobility Standards”. In: IEEE 1999 Emerging Technology Symposium on Wireless Communications & Systems, Richardson, Texas, USA, April 1999. http://www.UseCaseMaps.org/pub/ets99.pdf
Amyot, D. and Andrade, R. (1999) “Description of Wireless Intelligent Network Services with Use Case Maps”. In: SBRC’99, 17º Simpósio Brasileiro de Redes de Computadores, Salvador, Brazil, May 1999, 418-433. http://www.UseCaseMaps.org/pub/sbrc99.pdf
Amyot, D., Buhr, R.J.A., Gray, T., and Logrippo, L. (1999) “Use Case Maps for the Capture and Validation of Distributed Systems Requirements”. In: RE'99, Fourth IEEE International Symposium on Requirements Engineering, Limerick, Ireland, June 1999, 44-53. http://www.UseCaseMaps.org/pub/re99.pdf
Amyot, D. and Logrippo, L. (2000) “Use Case Maps and Lotos for the Prototyping and Validation of a Mobile Group Call System”. In: Computer Communication, 23(12), 1135-1157. http://www.UseCaseMaps.org/pub/cc99.pdf
Amyot, D., Charfi, L., Gorse, N., Gray, T., Logrippo, L., Sincennes, J., Stepien, B., and Ware, T. (2000) “Feature description and feature interaction analysis with Use Case Maps and Lotos”. In: Sixth International Workshop on Feature Interactions in Telecommunications and Software Systems (FIW'00), Glasgow, Scotland, UK, May 2000. http://www.UseCaseMaps.org/pub/fiw00lotos.pdf
Amyot, D. and Mussbacher, G. (2000) “On the Extension of UML with Use Case Maps Concepts”. In: <<UML>>2000, 3rd International Conference on the Unified Modeling Language, York, UK, October 2000. http://www.UseCaseMaps.org/pub/uml2000.pdf
Amyot, D. (2000) “Use Case Maps as a Feature Description Language”. In: S. Gilmore and M. Ryan (Eds), Language Constructs for Designing Features. Springer-Verlag. http://www.UseCaseMaps.org/pub/fireworks2000.pdf
Amyot, D. and Eberlein, A. (2001) “An Evaluation of Scenario Notations for Telecommunication Systems Development”. In: 9th International Conference on Telecommunications Systems (ICTS'01), Dallas, USA, March 2001. http://www.UseCaseMaps.org/pub/icts01.pdf

Amyot, D. (2001) Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS. Ph.D. thesis, SITE, University of Ottawa, Canada, September 2001.
http://www.Usecasemaps.org/pub/da_phd.pdf

Andrade, R. (2000) “Applying Use Case Maps and Formal Methods to the Development of Wireless Mobile ATM Networks”. In: Lfm2000, The Fifth NASA Langley Formal Methods Workshop, Williamsburg, Virginia, USA, June 2000. http://www.UseCaseMaps.org/pub/lfm2000.pdf
Andrade, R. and Logrippo, L. (2000) “Reusability at the Early Development Stages of the Mobile Wireless Communication Systems”. In: Proceedings of the 4th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2000), Vol. VII, Computer Science and Engineering: Part I, Orlando, Florida, pp. 11-16, July 2000. http://www.UseCaseMaps.org/pub/sci2000.pdf

Andrade, R. (2001) Capture, Reuse, and Validation of Requirements and Analysis Patterns for Mobile Systems. Ph.D. thesis, SITE, University of Ottawa, Canada, Mai 2001. http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/ra_phd.pdf

Bordeleau, F. and Buhr, R.J.A. (1997) “The UCM-ROOM Design Method: from Use Case Maps to Communicating State Machines”. In: Conference on the Engineering of Computer-Based Systems, Monterey, USA, March 1997. http://www.UseCaseMaps.org/pub/UCM-ROOM.pdf
Bordeleau, F. (1999) A Systematic and Traceable Progression from Scenario Models to Communicating Hierarchical Finite State Machines. Ph.D. thesis, School of Computer Science, Carleton University, Ottawa, Canada. http://www.UseCaseMaps.org/pub/fb_phdthesis.pdf
Bordeleau, F. and Cameron, D. (2000) “On the Relationship between Use Case Maps and Message Sequence Charts”. In: 2nd Workshop of the SDL Forum Society on SDL and MSC (SAM2000), Grenoble, France, June 2000. http://www.UseCaseMaps.org/pub/sam2000.pdf
Buhr, R.J.A. and Casselman, R.S. (1996) Use Case Maps for Object-Oriented Systems, Prentice-Hall, USA. http://www.UseCaseMaps.org/pub/UCM_book95.pdf
Buhr, R.J.A. (1998) “Use Case Maps as Architectural Entities for Complex Systems”. In: IEEE Transactions on Software Engineering, Special Issue on Scenario Management. Vol. 24, No. 12, December 1998, 1131-1155. http://www.UseCaseMaps.org/pub/tse98final.pdf
Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S. (1998) “High Level, Multi-agent Prototypes from a Scenario-Path Notation: A Feature-Interaction Example”. In: H.S. Nwana and D.T. Ndumu (Eds), PAAM’98, Third Conference on Practical Application of Intelligent Agents and Multi-Agents, London, UK, March 1998, 277-295. http://www.UseCaseMaps.org/pub/4paam98.pdf
Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S. (1998) “Feature-Interaction Visualization and Resolution in an Agent Environment”. In: K. Kimbler and L. G. Bouma (Eds), Fifth International Workshop on Feature Interactions in Telecommunications and Software Systems (FIW'98), Lund, Sweden, September 1998. IOS Press, 135-149. http://www.UseCaseMaps.org/pub/fiw98.pdf
Buhr, R.J.A., Elammari, M., Gray, T., and Mankovski, S. (1998) “Applying Use Case Maps to Multi-agent Systems: A Feature Interaction Example”. In: Hawaii International Conference on System Sciences (HICSS’98), Hawaii, January 1998. http://www.useCaseMaps.org/pub/hiccs98.pdf
Buhr, R.J.A. (1999), “Understanding Macroscopic Behaviour Patterns in Object-Oriented Frameworks, with Use Case Maps”. In: Fayad, M.E., Schmidt, D.C., and Johnson, R.E. (eds) Building Application Frameworks: Object-Oriented Foundations of Framework Design. John Wiley & Sons. http://www.UseCaseMaps.org/pub/uoof.pdf
Charfi, L. (2001) Formal Modeling and Test Generation Automation with Use Case Maps and LOTOS. M.Sc. thesis, SITE, University of Ottawa, Canada, 2001. http://www.UseCaseMaps.org/pub/lc-thesis.zip

de Bruin, H. and van Vliet, H. (2001) “Scenario-Based Generation and Evaluation of Software Architectures”. In: Generative and Component-Based Software Engineering (GCSE'01), LNCS 2186. http://www.Usecasemaps.org/pub/gcse01.pdf

Elammari, M. and Lalonde, W. (1999) “An Agent-Oriented Methodology: High-Level and Intermediate Models”. In: Proc. of the 1st Int. Workshop on Agent-Oriented Information Systems (AOIS'99), Heidelberg, Germany, June 1999. http://www.UseCaseMaps.org/pub/aom-aois99.pdf

Gordijn, J. and van Vliet, J.C. (1999) “Integral Design of E-Commerce Systems: Aligning the Business with Software Architecture through Scenarios”. In: ICT-Architecture in the BeNeLux, 1999. http://www.UseCaseMaps.org/pub/ict99.pdf

Gordijn, J., de Bruin, H. and Akkermans, J.M. (2001) “Scenario Methods for Viewpoint Integration in e-Business Requirements Engineering”. In: 34th Annual Hawaii International Conference on System Sciences (HICSS'01), Hawaii, USA, January 2001. http://www.UseCaseMaps.org/pub/hicss34-01.pdf

Gorse, N. (2001) The Feature Interaction Problem: Automatic Filtering of Incoherences & Generation of Validation Test Suites at the Design Stage. M.Sc. thesis, SITE, University of Ottawa, Canada, 2001. http://www.UseCaseMaps.org/pub/ng-thesis.zip

Hassine, J. (2001) Feature Interaction Filtering and Detection with Use Case Maps and LOTOS, M.Sc. thesis, University of Ottawa, Canada, February 2001. http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/jh_msc.pdf

Hodges, J. and Visser, J. (1999) “Accelerating Wireless Intelligent Network Standards Through Formal Techniques”. In: IEEE 1999 Vehicular Technology Conference (VTC’99), Houston (TX), USA. http://www.UseCaseMaps.org/pub/vtc99.pdf
· ITU-T Q.1200 General Series (1998), Intelligent Networks Recommendation Structure.

· ITU-T Z.100 (1999), Specification and Description Language.

· ITU-T Z.105 (1999), SDL Combined with ASN.1.

· ITU-T Z.109 (1999), SDL combined with UML.

· ITU-T Z. 120 (1999), Message Sequence Chart.

· ITU-T Z.140 (2001), The tree and tabular combined notation version 3 - TTCN-3: Core language.

· ITU-T, Draft Recommendation Z.151, URN-NFR: Goal-oriented Requirement Language
· ITU-T, Draft Recommendation Z.153, URN: Methodological Approach
· ITU-T, Draft Recommendation Z.160, Quality Aspects of Protocol-related Recommendations
· OMG, Meta Object Facility Specification (MOF), version 1.3.

· OMG, XML Metadata Interchange Specification (XMI), version 1.1

· OMG - UML RTF, Unified Modeling Language Specification (UML), version 1.4.

· W3C Recommendation, Extensible Markup Language (XML) 1.0 (Second Edition).

Liu, L. and Yu, E. (2001) “From Requirements to Architectural Design — Using Goals and Scenarios”. In: From Software Requirements to Architectures Workshop (STRAW 2001), Toronto, Canada, May 2001. http://www.UseCaseMaps.org/pub/straw01.pdf

Miga, A. (1998) Application of Use Case Maps to System Design with Tool Support. M.Eng. thesis, Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada. http://www.UseCaseMaps.org/pub/am_thesis.pdf
Miga, A., Amyot, D., Bordeleau, F., Cameron, C. and Woodside, M. (2001) “Deriving Message Sequence Charts from Use Case Maps Scenario Specifications”. In: Tenth SDL Forum (SDL'01), Copenhagen, Denmark, June 2001. http://www.UseCaseMaps.org/pub/sdl01-miga.pdf

Mussbacher, G. and Amyot, D. (2001) “A Collection of Patterns for Use Case Maps”. In: First Latin American Conference on Pattern Languages of Programming (SugarLoafPLoP 2001), Rio de Janeiro, Brazil, October 2001. http://www.Usecasemaps.org/pub/sugarloafplop01.pdf

Nakamura, M., Kikuno, T., Hassine, J., and Logrippo, L. (2000) “Feature Interaction Filtering with Use Case Maps at Requirements Stage”. In: Sixth International Workshop on Feature Interactions in Telecommunications and Software Systems (FIW'00), Glasgow, Scotland, UK, May 2000. http://www.UseCaseMaps.org/pub/fiw00filter.pdf
Monkewich, O., Sales, I., and Probert, R. (2001) “OSPF Efficient LSA Refreshment Function in SDL”. In: Tenth SDL Forum (SDL'01), Copenhagen, Denmark, June 2001.
http://www.Usecasemaps.org/pub/sdl01-sales.pdf

Petriu, D. and Woodside, M. (2001) “Generating a Performance Model from a Design Specification”. In: Third Workshop on Generative Programming, ECOOP 2001, June 2001.
http://www.Usecasemaps.org/pub/wgp01.pdf

Sales, I. and Probert, R. (2000) “From High-Level Behaviour to High-Level Design: Use Case Maps to Specification and Description Language”. In: SBRC'2000, 18º Simpósio Brasileiro de Redes de Computadores, Belo Horizonte, Brazil. http://www.UseCaseMaps.org/pub/sbrc00.pdf
Sales, I. (2001) A Bridging Methodology for Internet Protocols Standards Development. M.Sc. thesis, SITE, University of Ottawa, Canada, August 2001. http://www.Usecasemaps.org/pub/is_msc.pdf

Scratchley, W.C. and Woodside, C.M. (1999) “Evaluating Concurrency Options in Software Specifications”. In: MASCOTS’99, Seventh International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, College Park, MD, USA, October 1999, 330-338. http://www.UseCaseMaps.org/pub/mascots99.pdf
Scratchley, W.C. (2000) Evaluation and Diagnosis of Concurrency Architectures. Ph.D. thesis, Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada, June 2000.
http://www.Usecasemaps.org/pub/scratchley-thesis.pdf

Siddiqui, K.H. and Woodside, M. (2001) “Performance Aware Software Development Using Execution Time Budgets”. In: Proceedings of the 6th Mitel Conference (MICON 2001), Ottawa, Canada, August 2001. http://www.Usecasemaps.org/pub/micon01-budget.pdf

Use Case Maps Web Page and UCM User Group (1999-). http://www.UseCaseMaps.org
Yi, Z. (2000) CNAP Specification and Validation: A Design Methodology Using LOTOS and UCM. M.Sc. thesis, SITE, University of Ottawa, Canada. http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/zm_msc.pdf
UCM Change Request Form

	Please fill in the following details

	Character of change:
	 error correction
	 clarification

	
	 simplification
	 extension

	
	 modification
	 decommission

	Short summary of change request

	Short justification of the change request

	Have you consulted other users
	 yes
	 no

	Is this view shared in your organization
	 yes
	 no

	
	 11-100
	 over 100

	How many users do you represent?
	q 1-5
	q 6-10

	
	q 11-100
	q over 100

	Your name and address

Please attach further sheets with details if necessary

URN (Z.150) Rapporteur, c/o ITU-T, Place des Nations, CH-1211, Geneva 20, Switzerland. Fax: +41 22 730 5853, e‑mail: URN.rapporteur@itu.int

�All non-references removed. May need reference to XML and hence an A.5 form

�Additional definitions and abbreviations will be required.

�Metamodelling…

�Will change DRAMATICALLY as we get the metamodel in the document.

�To be updated with new Z.150 table

�to be updated and rationalised

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

xii

Error! Style not defined.

C:\SG17\WP3\3201.doc
27/04/2006

