PAGE
- 2 -
TD 3288

	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 17

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2005-2008
	TD 3288

	
	English only

Original: English

	Question(s):
	10, 11, 12, 13, 14/17
	Geneva, 6-15 December 2006

	TEMPORARY DOCUMENT

	Source:
	Q.11/17 Rapporteur (Rick Reed)

	Title:
	Notations to Define ITU-T languages (TDY21)

TSB Note: this document is available in soft copy only

This is based on document TDR18 of the Grimstad joint Q.11, 12, 13/17 meeting (also known as TD3043v9, a revision of TD3043 of the Moscow SG 17 meeting) – source: Q.13/17 Rapporteur.

Z.111 is of primary concern to Q.13/17, but will impact Q.10, 11, 12 and 14 for new work.

The purpose of this current document is to try to resolve some of the issues with draft Z.111 so that Z.111 can be consented for submission to the approval procedure at the December 2006 meeting.

Z.111 is to be a basis for the definition grammars for ITU-T languages. It defines meta-grammars (that is grammars used to define language grammars). Previously such meta-grammars were provided as part of each ITU-T language definition such as X.680, Z.100, Z.120, Z.130 and Z.140. There was therefore some repetition and also inconsistency in the meta-grammars.

There is an assumption that each language will be defined with both an abstract grammar and a concrete grammar, and that each grammar consists of a syntax specification and conditions that have to be met.

In the past the abstract syntax of ITU-T languages have been expressed in one of 2 different ways: a textual style (as in Z.100) based on MetaIV and a graphical metamodel (as in Z.130) based on the OMG MOF notation. There are differences in the two styles, though they both endevour to capture the same information. In the textual style the abstract syntax can closely follow the concrete syntax of the language, and every attribute of a particular item is usually either a terminal or a non-terminal in the syntax. In the graphical metamodel style, an item can inherit attributes from parent items as well as having its own attributes, but the relationship with concrete syntax is not so simple because sub-items in the concrete syntax may correspond to inherited attributes or directly defined attributes. The objective of of Z.111 is to allow both the textual and metamodel styles, and for these to be of equal power so that it is possible to convert one to the other. The two styles differ in the convenience of expressing certain aspects of the language and tools that are available.
The notes below, track issues to be resolved in the proposed guidelines. The proposed text of Recommendation Z.111 begins at page 11. It is far from completed; in other words, this Temporary Document reflects work in progress for information and comment.

Known Issues from TDR18

· Section 2.1: One concrete grammar may not cover everything found in another concrete syntax (it could be just a subset). The intention is that concrete grammar elements that map to the same abstract syntax elements have the same semantics.

· Section 2.3.1 b): Should be extended to textual concrete syntaxes, because it only implies graphical syntaxes (notations other than Z.100 need to be considered).

· Section 2.4.1.2 needs more explanations and references. Some parts of the grammars could be illustrated in a better way. EnumeratedType and PrimitiveType metaclasses are somewhat forced and will lead to confusion.

· The sections on the textual and metamodel styles of presenting the abstract grammar should use the same examples.

· Mapping from “|” to metamodel needs an additional constraint saying that these are mutually exclusive. The multiplicity is “0..1” for each. Alternatively, we could use the mapping suggested by Fischer et al but we would have to extend alternative by the ability to add structure.

· Clarify what the meaning of terminals on the righhand-side of rules. Should these generate stereotypes of the defined class in the metamodel? This is used in the Z.100 grammar, but the only examples are quotation objects.

· Example: Grammar = { A :: B [DIRECTED] C }

· The primitive types are somewhat unclear. Moreover to the metacircularity this is always a confusing area for users.

· Why does the metamodel set the multiplicity on attributes to “1” and disallow ordering on attributes? There is no such restriction in the grammar.

· The translation from text to metamodel generates multiple inheritance which is disallowed in the metamodel; also the grammar does not allow multiple inheritance. The multiple inheritance generated is a side-effect of the treatment of Alternative. We probably can allow it but we should have the restriction that name clashes are not allowed.

· Example: Grammar = {A :: B | C, B (D) :: X*}

This grammar translates into the metamodel below. As can be seen, B inherits from both D (as declared in the second rule) and the class A defined by the first rule.

[image: image1.emf]A

B C

D

X

*

Thomas Weigert wrote in TD3215:

The problem arose because inheritance and alternative were considered to be similar in allowing a single class to be replaced by several other classes. But these concepts cannot be substituted for each other, because alternatives do not allow for other properties to be associated with the non-terminal, and alternatives of only one element are not possible. However, it is possible that a class has only a single child, and that properties be associated with the non-terminal that is a superclass. While these issues are not insurmountable (e.g., a “one-armed” alternative could be introduced by leaving the second disjunct empty, and a notation for associating properties with a non-terminal defined by an alternative could be invented), these would require to differentiate between the definition of a class and its properties and the definition of a superclass in terms of its subclasses (note that the metamodel approach takes the opposite tack for the latter: a class identifies its superclass, but not vice versa).

· Possible examples: A :: B | C, A :: X* (A has subclasses B and C, and has property X)

· A :: B | (A has only one subclass B)

In this case we could disallow inheritance in grammars, but care would have to be taken that multiple inheritance is not inadvertently introduced.

Discussion and proposal (Rick Reed – Aug 2006):

The case for using inheritance for alternatives does not seem to be very strong. Although

· A :: B | C

seems to imply that B and C inherit from A, the alternative interpretation is that A has one special kind of component, which is either a B or C. Because this is like the CHOICE construct in ASN.1 and SDL, consider this to be a ‘choice’. Each alternative construct can then be considered to an (implicit) instance of a <<choice>> stereotype in the metalanguage. In this case the above would map to:

[image: image2.wmf]

0.

.

1

0.

.

1

A

<<cho

i

ce>>

B

C

0.

.

1

0.

.

1

b

name

cn

a

m

e

Where there is a constraint that within a <<choice>> the sum of the multiplicity of the components is always 1, so that there can only be a B if there is no C and vice versa. However, this case is a simplification because typically alternatives occur within a grouping. For example:

· AA :: { B | C }* D

However, the issue here is that there needs to be an implicit class for the group, so the above proposal still works provided the group implies an implicit class (here with a multiplicity 0..*).

Another issue is that names are required in the graphical form, but are not allowed in the textual form. Names are useful for the formalisation of constraints. In the above example the names bname and cname are introduced and allows reference to A.bname or the bname of A. To make the graphical and textual forms of equal power, it should be allowed to have names in the textual form. It is suggested that within a rule each referenced rule name can be preceded by an optional name (starting with a lowercase letter to distinguish it for rule names) with a separating colon.

Extension of the Concrete grammar metalanguage (Rick Reed – Aug 2006):

The revised proposal in this document extends the Concrete grammar metalanguage to include specification of the number of times an item is repeated, and also separators for lists.

There is a further need to be able to specify that a concrete syntax rule in a basic form in one place, and then extend the concrete syntax in another place. Currently this is done in Z.100 and between Z.100 and Z.104, Z.105 and Z.106, but in a rather informal way stating that one syntax rule replaces an existing rule. Because new concrete syntax may also require new attributes in the Abstract grammar, there probably also needs to be some way of extending abstract grammar as well.

It may be desirable to have comments within the metalanguages. ISO BNF allows this.

Further items that could be in Z.111 (Rick Reed – Aug 2006):

Several of the Recommendations for language have very similar rules for maintenance. There may be some benefit to put some common rules for maintenance in Z.111, in particular the definition of the types of change.

Language Recommendations really should include some rules for conformance for both descriptions in the language and tools that claim to support the language. In principle tool conformance is not needed as what the user ideally wants is descriptions in the language that conform to the language rules. However, the easiest way of assuring a description complies with the language is to put the description though a tool that can check language conformance, so to be practical tools used to develop descriptions should have this capability. They could then give assurance a description complies with the language and has the behaviour and other properties required by the language. Rather than repeat common rules in every language, this could be included in Z.111.

Mapping and equivalence between textual and graphic abstract syntax Z.111 (Rick Reed – Nov 2006):

TDR18 contained a mapping from the textual to the graphic abstract syntax, and also a mapping for the graphic to the textual syntax.

While it may be an excellent idea from an engineering point of view to define such mappings, it may not be a good idea to make the algorithms a normative part of the standard, and even if it is normative it should probably be in a Annex rather than in the main body as it provides a means to transform between the two notations rather than define the language to be used and how to use it. Moreover, it is probably not the case if the transformation textual->graphical->textual ends up with the same abstract grammar that the input to the transformation (and similarly for graphical->textual->graphical). Ideally the two forms should be semantically equivalent and have the same information content as far as the abstract grammar is concerned. Thus it would be better if there is a common meta-meta-model.

In the case of mapping from textual to graphic abstract syntax Thomas Weigert wrote (as a comment): This algorithm needs to be translated into English, as it currently expresses the conversion in a Perl like syntax. Nevertheless it is more precise than the current English text (which is kept in the footnote for reference). We may want to keep this algorithm in a non-normative Appendix. Note that this algorithm is a little loose with respect to the ordering of rules, but it gets the basic message across. I can be seen from this text that the algorithm may not be completely formal.

For these reasons mappings have been moved to Appendices, and for the initial version of Z.111 it is suggested that they are deleted.

Current status of draft Z.111 (Rick Reed – Nov 2006):

The meta-languages for abstract and concrete grammar are essentially sound, but needs thorough checking and reviewing.

The presentation style, division of text and titled enumeration items are essentially copied from Z.100, so it may need to be considered whether these should be adopted for all new languages and (major) revision of existing language Recommendations.

The mapping between the abstract syntax notations needs refinement if it is to be included in the Recommendation.

There is scope for further work.

Metamodel diagram and text

The diagram for the meta-metalanguage was redrawn so that changes could be made. The original tool used was not available so it was redrawn using Telelogic Tau and then copied to a Microsoft word picture. The text describing the metamodel was also rewritten. The original text is below with comments.

[image: image3.emf]name: Token

multiplicityMin: Token = 1

multiplicityMax: Token = 1

Attribute

name: Token [0..1]

multiplicityMin: Token

multiplicityMax: Token

isOrdered: Boolean = false

isNavigable: Boolean = false

isComposite: Boolean = false

AssociationEnd

0..*

0..* end

attribute

0..1

inheritsFrom

0..*

Association

1 source

1 target

value: Token

DefaultValue

DataType

0..1

default

1

1 type

0..*

name: Token

EnumeratedType

name: Primitive

PrimitiveType

1 class

1

1

1 association

name: Token

Enumeration

name: Token

Literal

1

1..* literals

{unordered}

Token

Nat

Quotation

Boolean

Unspecified

«enumeration»

Primitive

name: Token

Class

1 type

0..*

Source, target don't quite make

sense for bidirectional associations.

The meta-metamodel elements below are represented using the syntax of UML
, except were noted otherwise.

i)
Class: Named element
that may contain attributes and participate in associations. A class can inherit attributes and associations from another class (single inheritance only).

No two classes can have the same name.

The names of all association ends navigable from a given class must be different, and they must also differ from attribute names of that class.

The inheritance relationship between classes must not be circular.

ii)
Attribute: Named element
 that has a data type with, optionally, a default value. An attribute can also be optional.

No two attribute s within a class, including the attributes inherited from parent classes, can have the same name.

If a default value is present, then is must be of the data type of the attribute (that is, within the domain allowed by the primitive type, or be one of the enumerated literals of the enumeration type).

Only DataTypes can be used as the type of attributes (associations can be used otherwise).

iii)
PrimitiveType: A data type where the type is predefined (one of Nat, Token, Quotation,
 Boolean, Unspecified).

iv)
Enumeration: Named element that contains literals.

The name must not correspond the name of an existing class or primitive data types.

v)
Literal: Named element contained in an enumeration.

vi)
EnumeratedType: A data type defined by an enumeration.

The type is the name of an existing Enumeration
.

vii)
DefaultValue: Element associated to an attribute that provides a default value of the appropriate type.

viii)
Association: Relation between the classes navigable from the source and target end.

At least one association end must be navigable. An association navigable in only one direction has an arrow on the navigable end.

Only the source association end must be a composite.

ix)
AssociationEnd: Named element that indicates whether this end of the association is navigable and if so what is its name. It also specifies the multiplicity of that end of the association.

An association end can also represent a composition.

A navigable end must have a non-empty name.

multiplicityMin and multiplicityMax are natural numbers or “*”, which means infinity. The value of multiplicityMin must be less or equal to the value of multiplicityMax. The value of multiplicityMax cannot be 0.

If multiplicityMax is larger than 1, the association end denotes a collection of objects. By default, this collection is ordered.

The type of an association end is the same as association.target.class for that association end.

Several modelling elements commonly used in class diagrams should be avoided when describing metamodels. These include:

–
Packages: A structuring mechanism that does not add semantic value at the abstract syntax level.

–
Visibility of attributes and association ends: This has no impact on an abstract syntax as it is hidden.

–
Default association multiplicities: In order to avoid ambiguities in the understanding of default multiplicities (which may differ according to standards or people), multiplicities at association ends should be explicit.

–
Multiple inheritance: May require name resolution and hence should be avoided.

–
Operations: Not needed to capture an abstract syntax. May have been used in OCL constraints, but this leads to unnecessary complexity.

–
Abstract classes: Can be avoided as the mapping between a concrete syntax and an abstract syntax can prevent the instantiation of such classes.

–
Interfaces: Not needed since there are no operations.

· Do not include layout elements (graphical information such as colour, positions, shapes, sizes)

ITU-T Recommendation Z.111

Notations and Guidelines for the Definition of ITU-T Languages

Summary
Scope-objective

Notation and guidelines for the definition of formal languages is provided.
Coverage

The main features of the Recommendation are notations for defining the abstract and concrete syntax of languages, and a common structure for defining languages.

Applications

The Recommendation should be applied to new and possible to revised formal language Recommendations.

Status/Stability

The notation and guidelines given are stable and have been used some of the existing language Recommendations, such as Z.100. There is scope for further guidelines; extension to the notations given, and the possibility of further formal notations, such as a formal notation for specifying constraints.

Associated work

The Recommendation is generally associated with the study of formal languages for telecommunications applications in ITU-T, in particular the languages defined by the X.680 series, Z.100 series, Z.120 series, Z.130 series, Z.140 series and Z.150 series Recommendations.

The Recommendation is also related to the UML work of OMG, in particular because it uses MOF from OMG
.

Background

Before the introduction of this Recommendation, the language Recommendations defined by ITU-T used different ways of describing the syntax and semantics of languages. This hinders the understanding, verifiability, and maintainability of these languages, and prevents their simple harmonization. The earlier languages used grammars in Backus-Naur Form (BNF) to define concrete syntaxes and, at times, abstract syntaxes. The current trend is to use Meta Object Facility (MOF) metamodels to capture several aspects of languages and separate an abstract grammar from the concrete notation with a defined relationship between them. Each of the earlier BNF and current MOF approach has its benefits and drawbacks. MOF metamodels are appealing due to their graphical nature (where associations and inherited concepts are explicit), whereas BNF grammars are easily analyzable by tools.

This document proposes guidelines for the definition of MOF metamodels describing languages in a way that would be compatible with the current approaches based on textual grammars. It especially targets language Recommendations such as the URN, whose development is contemporary with or subsequent to this Recommendation.

MOF and UML-based meta-metamodels contain many features that make metamodels unnecessarily complex, difficult to understand semantically, and difficult to map to BNF grammars. This document focuses on a subset of modelling features that is expressive enough to describe language metamodels and that is isomorphic to textual grammars.

CONTENTS

SDL Forum Society Z.100 (11/99)

111
Scope

1.1
Objective
11
1.2
Application
11
2
Conventions
11
2.1
Grammars
11
2.2
Basic definitions
12
2.3
Presentation style
12
2.3.1
Division of text
12
2.3.2
Titled enumeration items
12
2.4
Metalanguages
14
2.4.1
Metalanguage for the Abstract Grammar
14
2.4.1.1
Textual presentation
14
2.4.1.2
Metamodel presentation
19
2.4.2
Metalanguage for the Concrete Grammar
21

NOTATIONS and GuidelInes for the DEFINition ITU-T LANGUAGES

1 Scope

This Recommendation provides notation and guidelines for the definition of formal languages defined in new and optionally in revised language Recommendations that define formal languages or description techniques as outlined in Rec. Z.110.

1.1 Objective

The objective is to provide a basis for a common structure and meta-grammar notations to be used in formal language Recommendations, so that it is not necessary for each language Recommendation to describe its structure and the meta-grammars used: instead each language Recommendation can contain a reference to this Recommendation. By using a common structure and meta-grammar notations, it is also easier to integrate the different formal languages, therefore making it easier to use the languages together both with and without the support of tools. The common structure and meta-grammar notations makes it easier to build tools that combine the ITU-T languages with each other and other notations. The use of a common structure and meta-grammar notations in different formal language Recommendations makes it easier to understand several formal language Recommendations, because the structure and meta-grammar only has to be learnt once.

1.2 Application

When a new Recommendation is being drafted for a formal language, the application of this Recommendation should be applied. If it is decided not to apply this Recommendation, the reasons should be stated in the formal language Recommendation.

When a Recommendation for an existing formal language is being revised, the application of this Recommendation should be considered taking into account costs and benefits. If this Recommendation is not applied or is applied partially, the revised formal language Recommendation should at least contain a statement explaining that the structure and meta-language notations of the formal language Recommendation predated the approval of this Recommendation.

The structure and meta-grammar notations given in this Recommendation are also likely to be useful for the definition of other formal languages, not just formal languages defined in ITU-T Recommendations. If it is later decided to consider making a Recommendation for such a formal language, the prior application of this Recommendation will be a benefit.

2 Conventions

If a language Recommendation conforms to this Recommendation, it conforms to the conventions defined in this section and therefore these do not need to be repeated in the language Recommendation.

2.1 Grammars

A description only conforms with a Recommendation if it conforms to both the Concrete grammar and Abstract grammar of the corresponding language definition: that is, the description must be both recognizable as the language defined in the Recommendation and have the same meaning as defined by the Semantics in the Recommendation. If further concrete grammars are defined (in additional Sections, Annexes or Recommendations), each of the concrete grammars has a definition of its own syntax and of its relationship to the abstract grammar (that is, how to transform into the abstract syntax). Using this approach, there is only one definition of the semantics of a language: the semantics of each of the concrete grammars is identified via its relationship to the abstract grammar. This approach also ensures that any further grammars are equivalent.

For some constructs of the concrete grammar there may be no directly equivalent abstract syntax. In these cases, a Model is given for the transformation from concrete syntax into the concrete syntax of other constructs that (directly or indirectly via further models) have an abstract syntax. Items that have no mapping to the abstract syntax (such as comments) do not have any formal meaning.

2.2 Basic definitions

Some general concepts and conventions are used throughout a language Recommendation; their definitions are given in the following subclauses.

2.3 Presentation style

The following presentation style is used to separate the different language issues under each topic.

2.3.1 Division of text

A language Recommendation is organized by language features described by an optional introduction, which by convention shall be informative rather than normative (see ‎2.3.2), followed by titled enumeration items for:

a)
Abstract grammar – Described by abstract syntax (either a textual grammar or a graphical metamodel) and static conditions (that is, static constraints) for a model in the language to be well‑formed for an abstract model where artifacts of the concrete syntax are ignored.

b)
Concrete grammar – Described by the graphical syntax, static conditions and rules for the graphical syntax to be well‑formed (including drawing rules), the relationship of this syntax with the abstract syntax.

c)
Semantics – Gives meaning to a construct, provides the properties it has, the way in which it is interpreted and any dynamic conditions that have to be fulfilled for the construct to behave well in the sense of the language defined.

d)
Model – Gives the mapping for notations that do not have a direct abstract syntax and modelled in terms of other concrete syntax constructs. A notation that is modelled by other constructs is known as a shorthand, and is considered to be derived syntax for the transformed form.

To avoid misunderstandings, a language Recommendation that follows this Recommendation and uses informative introductions shall include clause that states: Where a section contains titled enumeration items (Abstract grammar, Concrete grammar, Semantics, Model) the introductory text before the first titled enumeration item in a clause is for information only as if written as a NOTE (that is, informative not normative), except if there as an explicit state it is normative.

2.3.2 Titled enumeration items

Where a topic in the language definition has an introduction followed by a titled enumeration item, the introduction is considered to be an informal part of the Recommendation presented only to aid understanding and not to make that Recommendation complete.

If there is no text for a titled enumeration item (Abstract grammar, Concrete grammar, Semantics, Model), the whole item is omitted.

It is permitted for a Recommendation to define additional titled enumeration items, such as an Examples section.
The remainder of this subclause describes the other special formalisms used in each titled enumeration item and the titles used. It can also be considered as an example of the typographical layout of first-level titled enumeration items defined above where this text is part of an introductory section.

a)
Abstract grammar

The abstract syntax notation is defined in ‎2.4.1.

If the titled enumeration item Abstract grammar is omitted, then there is no additional abstract syntax for the topic being introduced and the concrete syntax shall map onto the abstract syntax defined by another numbered text clause.

The rules in the abstract syntax may be referred to from any of the titled enumeration items by use of the rule name in italics.

The rules in the formal notation may be accompanied by paragraphs that define conditions which shall be satisfied by a well-formed text of the language being defined and which can be checked without interpretation of that text. The static conditions at this point refer only to the abstract syntax. Static conditions, which are only relevant for the concrete syntax, are defined with the concrete syntax. Together with the abstract syntax, the static conditions for the abstract syntax define the abstract grammar of the language.

b)
Concrete grammar

The concrete syntax is specified in the extended Backus-Naur Form of syntax description defined in ‎2.4.2.

The concrete syntax is accompanied by paragraphs defining the static conditions which must be satisfied in a well-formed definition and which can be checked without interpretation of a definition. Static conditions (if any) for the abstract grammar also apply.

In many cases there is a simple relationship between the concrete and abstract syntax, because the concrete syntax rule is simply represented by a single rule in the abstract syntax. When the same name is used in the abstract and concrete syntax in order to signify that they represent the same concept, the text "<x> in the concrete syntax represents X in the abstract syntax" is implied in the language description and therefore does not need to be stated explicitly. In this context, spaces and hyphens are treated as equivalent, case is ignored but underlined semantic sub-categories (see ‎2.4.2) are significant, so that <integer name> represents Integer-name in the abstract syntax.

Concrete syntax that is not a shorthand form is strict concrete syntax. The relationship from concrete syntax to abstract syntax is defined only for the strict concrete syntax. Strict syntax is always defined in the Concrete grammar. The syntax for a shorthand is allowed to be defined in the Model.

The relationship between concrete syntax and abstract syntax is omitted if the topic being defined is a shorthand form that is modelled by other constructs of the defined language (see Model below).

When the name of a non-terminal ends in the concrete grammar with the word "diagram" and there is a name in the abstract grammar that differs only by ending in the word definition, then the two rules represent the same concept. For example, <system diagram> in the concrete grammar and System-definition in the abstract grammar correspond.

When the name of a non-terminal ends in the concrete grammar with the word "area" and there is a name in the abstract grammar that differs only by having the word area deleted, then the two rules represent the same concept. For example, <state partition area> in the concrete grammar and State-partition in the abstract grammar correspond.

c)
Semantics

Properties are relations between different concepts in the language defined. Properties are used in the rules for a model to be well-formed.

An example (from the specification of SDL in Z.100) of a property is the set of valid input signal identifiers of a process. This property is used in the static condition "For each State-node, all Signal-identifiers (in the valid input signal set) appear in either a Save-signalset or an Input-node".

Properties are static if they can be determined without interpretation of definitions in the defined language and are dynamic if an interpretation of the same is required to determine the property.

The interpretation is described in an operational manner. Whenever there is a list in the abstract syntax, the list is interpreted in the order given. That is, the Recommendation describes how objects of the semantic domain are created from a definition and how these objects are interpreted within an "abstract machine". Lists are denoted in the abstract syntax by the suffixes "*" and "+" (see ‎2.4.1).

Dynamic conditions are conditions that must be satisfied during interpretation and cannot be checked without interpretation. Dynamic conditions may lead to errors.

NOTE (Behaviour of the object of the semantic domain is produced by "interpreting" the definition. The word "interpret" is explicitly chosen (rather than an alternative such as "executed") to include both mental interpretation by a human and the interpretation of the definition by a computer.

d)
Model

Some constructs are considered to be "derived concrete syntax" (or a shorthand notation) for other equivalent concrete syntax constructs. For example, omitting an input for a signal is derived concrete syntax for an input for that signal followed by a null transition back to the same state.

The concrete syntax for a shorthand notation is allowed to be placed either in the Concrete grammar or in the Model.

The properties of a shorthand notation are derived from the way it is modelled in terms of (or transformed to) the primitive concepts. In order to ensure easy and unambiguous use of the shorthand notations, and to reduce side effects when several shorthand notations are combined, these concepts are transformed in a specified order.

The result of the transformation of a fragment of derived concrete syntax is usually either another fragment of derived concrete syntax, or a fragment of concrete syntax. The result of the transformation may also be empty. In the latter case, the original is removed from the specification.

Transformations can be inter-dependent and therefore the order in which various transformations are applied determines the validity and meaning of a definition.

2.4 Metalanguages

For the definition of properties and syntaxes of ITU-T languages, different metalanguages are used according to the particular needs.

In the following, an introduction of the metalanguages used is given.

2.4.1 Metalanguage for the Abstract Grammar

The abstract grammar of the language defines the relationships between elements of the language, without being concerned with issues such as punctuation marks that are needed to separate or terminate concrete syntax elements. There are two notations defined for the abstract grammar: a textual abstract syntax and a graphical metamodel notation.

2.4.1.1 Textual presentation

The following informally describes the textual presentation of the abstract syntax of ITU-T languages.

A definition rule in the abstract syntax can be regarded as a named composition defining a list of sub‑components. The name starts with a letter (by convention uppercase) and is followed by any number of (by convention lowercase) letters and single hyphens ending in a (by convention lowercase) letter. When a name is used on the right-hand-side of a rule, it is allowed to be immediately followed by suffixes as described below.

To avoid confusion with the suffix “-set”, a name shall not end in “-set”. To avoid confusion with Quotation, a name should not be in all uppercase letters. The case of names is significant, so that My-item is distinct from My-Item, but the use of two names that differ only in the case of letters should be avoided, so that tools can be used to correct errors.
By convention names are in italics, which allows the rules and component names of the abstract syntax to be more easily recognised in the context of other text and the name to be distinguished when used in plain text. The suffix “-set” by convention has the word “set” in bold.

A rule starts with the name of the rule followed by either "::" or "=". The rule continues on the same line and subsequent lines until followed by another rule or any printing character not allowed within a rule (such as a comma "," or a semi-colon ";"), or the end of the text containing the rules (for example, the end of a file, end of a text box or a paragraph style not allowed for rules). Non-printing characters in rules are separators and are otherwise ignored, but by convention names of rules are always placed at the start of a new line, and continuation lines for a rule start with a non-printing character (usually a space or tab character). The characters that are allowed within a rule are ":" (part of "::" or ":="), "=", "*", "+", "[", "]", "|", "{", "}", "." (as part of ".." or "…"), "-", digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and (uppercase and lowercase) letters (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z).

The symbol "::" can be read as "is defined as" and is used to define a domain in a definition rule.

For example:

Channel-path
::
Originating-gate

Destination-gate

Signal-identifier-set
which defines the domain for the composition named Channel-path. This consists of three sub‑components, which in turn are compositions or elementary domains (see below). It is allowed for a sub-component to contain the domain being defined, but (to avoid an infinitely recursive definition) there shall be at least one alternative of the domain definition that does not include such a sub-component.

It is allowed that a domain has no sub-components, and this is denoted by a "{}" as the right-hand-side of a definition rule. It is the presence (or absence) of an instance of such a domain that is still significant, and instance of such a domain is distinct from an instance of any other domain even if the other domain does not have any components.

The symbol "=" can be read as "is equivalent to" and is used to define an equivalence rule where the name on the left-hand-side is equivalent to the syntactic expression on the right-hand-side. An equivalence name starts with a letter (by convention uppercase) and is followed by any number of (by convention lowercase) letters and single hyphens ending in a (by convention lowercase) letter. Wherever the name on the left-hand-side occurs, syntactically it can be replaced by the expression on the right-hand-side, grouped if the right-hand-side has multiple components. The reason for using "=" is to avoid repeating a common grouping especially in the case of alternatives, or to give a more specific name to a domain in a particular context to aid description of the language.

The definition

Agent-identifier
=
Identifier

expresses that an Agent-identifier is equivalent an Identifier and therefore cannot (syntactically in the abstract syntax) be distinguished from other Identifier items defined in the same way such as a Signal-identifier where:

Signal-identifier
=
Identifier

The distinction between items defined as equivalent is not syntactic. For example, each Identifier instance has a value, which allows one instance to be distinguished from another and whether the value is the Identifier for a signal (Signal‑identifier) or agent (Agent‑identifier) in the model being defined. The name Agent‑identifier is preferable wherever the Identifier has to identify an agent. The constraint (on the Identifier to identify an agent in this case) may be implied by general conventions or could be given by natural language and optionally by formal expression (in a language such as OCL). An alternative to naming equivalences is to name components of a domain (as described below).

If the right-hand-side of a definition rule
The definition:

Agent-qualifier
::
Agent-name

expresses that an Agent-qualifier is a domain that has a component that is an Agent-name and Agent-qualifier is distinct from the domain for Agent-name. For example, if

Agent-name
=
Name

Interface-name
=
Name

an Agent-qualifier can be distinguished syntactically from an Agent-name and other items that in the same domain as Agent-name such as an Interface-name.
The definition

Nextstate-node
=
Dash-nextstate | Named-nextstate
expresses that an Nextstate-node is equivalent the alternatives on the right-hand-side. Therefore syntactically,

Terminator
::
(Nextstate-node

 | Stop-node

 | …

has the same meaning as

Terminator
::
(Nextstate-node

 | Stop-node

 | …

An abstract syntax item might also be of some elementary (non-composite) domains. Predefined elementary domains are:

a)
Natural

This is the elementary domain of non-negative integers.

Example:

Number-of-instances
::
Nat [Nat]

Number-of-instances denotes a composite domain containing one mandatory natural (Nat) value and one optional natural ([Nat]) denoting respectively the initial number and the optional maximum number of instances.

b)
Boolean

 Boolean denotes the domain of the two Boolean values TRUE and FALSE.

c)
Quotation

These are represented as any bold face sequence of uppercase letters and digits. There can be a single quotation or a number of grouped quotations separated by "|", and in both cases this defines an enumerated domain with as many values as there are quotations. For example,

Agent-kind
=
SYSTEM | BLOCK | PROCESS

The quotation defines a enumerated domain with three values, represented by SYSTEM, BLOCK and PROCESS. Usually the names used in the abstract syntax correspond to the names in the concrete syntax, in this case the keywords SYSTEM, BLOCK and PROCESS. In this example, the name Agent-kind is made equivalent to the enumerated domain. If the quotation group was a component of a domain with other components (see example Visibility-name below), the enumeration domain has an implicit name only and cannot be reused in other contexts, and another use of the same quotations defines another implicit domain.

A single quotation corresponds to a domain with just one value, and will usually appear in an option. In such cases it is usually preferable to replace the quotation with a Boolean.

Example:

Channel-definition
::
Channel-name

[NODELAY]

Channel-path-set

A channel definition has the property that it does not delay distinguished by an optional quotation NODELAY. This could be replaced by:

Channel-definition
::
Channel-name

Is-delaying

Channel-path-set

Is-delaying
=
Boolean := TRUE

Similarly if there are only two alternatives, this can usually be replaced by a Boolean. For example:

Category-definition
::
Category-name

{ ABSTRACT | CONCRETE }

Category-details

could be replaced by

Category-definition
::
Category-name

Is-concrete

Category-details

Is-concrete
=
Boolean
d)
Token

Token denotes the domain of tokens. This domain can be considered to consist of a potentially infinite set of distinct atomic objects for which no representation is required.

Example:

Name
::
Token

A name consists of an atomic object such that any Name can be distinguished from any other name.

e)
Unspecified items

An unspecified item denotes domains which might have some representation, but for which the representation is of no concern in the language Recommendation.

Example:

Informal-text
::
 ...

Informal-text contains an object that does not have a formally defined content and structure and therefore is not formally interpreted. The meaning is therefore not formally defined and if interpretation of the model leads to interpretation of the informal the further behaviour of the system is not defined.

The following operators (constructors) of BNF (see ‎2.4.2) have the same use in the abstract syntax:

suffix "[n..m]" for a list of between n and m items, where n is a non-negative integer, m is a positive integer >= n;

suffix "[n]" for a list of exactly n items, where n is a positive integer – equivalent to [n..n];
suffix "[n..*]" for a list of at least n items, where n is a positive integer;

suffix "*" for a possibly empty list, which is equivalent to the suffix [0..*];

suffix "+" for a non-empty list, which is equivalent to the suffix [1..*];

separator "|" for an alternative;

brackets "[" "]" for meaning the enclosed item or items are optional.

Parentheses "{" and "}" are used for grouping of items that are logically related.

All the operators (including "-set" and "+set" optionally followed by the number of items – see below) are applied to either a domain name or to a grouping (within "{" and "}").

A domain is allowed to be specified to have a structure derived from another domain, in which case we say the former (child) domain inherits its structure from the latter (or parent) domain. A child domain has all the sub-components defined by the parent domain, and it is allowed to add sub-components which follow the inherited components. An child item object is allowed in any place of the tree of objects where parent item objects are allowed.

For example, the definition

Agent-identifier (Agent-name)
::
Qualifier

defines an Agent-identifier to have the same structure as Agent-name but has another component that is a Qualifier. As far as the structure is concerned, the above definition is the same as defining

Agent-identifier
::
Agent-name Qualifier

However, the former inheritance definition means that an Agent-identifier instance is allowed wherever an Agent-name instance is allowed, so rather than specify the alternatives{ Agent-identifier | Agent-name }, a single Agent-name is sufficient.

Finally, the abstract syntax uses two other postfix operators "-set" yielding a possibly empty set (unordered collection of distinct objects) and the postfix operator "+set" yields a set which shall not be empty. These can also have the suffixes "[n]" for a set of exactly n items, suffix "[n..m]" for a set of between n and m items, suffix "[n..*]" for a set of at least n items.

Example:

Agent-graph
::
Agent-start-node State-node-set
An Agent-graph consists of an Agent-start-node and a possibly empty set of State-nodes.

Where a sub-component is of an elementary domain, or a quotation a default value can be specified for this sub-component. For example,

Number-of-instances
::
Nat:=1 [Nat]

specifies that the first Nat component will have the value 1, if no value is specifically given in the concrete notation.

Visibility-name
::
Name { PUBLIC | PROTECTED | PRIVATE := PUBLIC }

specifies that the second component will have the Quotation value PUBLIC, if no value is specifically given in the concrete notation.

Suffixes that specify multiplicity for a list or set specify constraints on the grammar if the lower bound is greater than zero or if an upper bound is given (that is, it is not “*”). Often there are other constraints that need to be specified: for example in Number-of-instances if there is a second Nat this represents the maximum number of instances and has to be greater than or equal to the initial number of instances given by the first Nat. A natural language description of such constraints helps explain the reason for the limitation, but writing natural language so that the formulation of the constraint is clear and unambiguous can be difficult especially if the text is to be translated into different natural languages. For that reason, it is desirable that constraints on the grammar are written in a formal notation (such as OCL). To be able to clearly refer to the domain components of a domain, each domain component can optionally be given a name starting with a lowercase letter preceding the component domain by a colon, for example:

Number-of-instances
::
initialNumber: Nat:=1 [maximumNumber: Nat]

In this case it is now possible to write Number-of-instances.maximumNumber >= Number-of-instances.initialNumber. An alternative to named domain components is to introduce an equivalence rules for each component. For example:

Number-of-instances
::
Initial-number [Maximum-number]

Initial-number
=
Nat :=1

Maximum-number
=
Nat
The main differences are the relative conciseness of the named component notation, and that a component name is local to a domain whereas an equivalence name can be used in several domains.

The following gives a more formal abstract description of the textual abstract grammar defined in the notation itself as far as possible and supplementary to the text above:

Grammar
:: Rule-set
Rule
:: Definition-rule | Equivalence-rule

Definition-rule
:: Name [Non-terminal] [Expression]
Equivalence-rule
:: Name Expression

Expression
:: Alternatives | Composition | Option | List | Set | [Component-name] Domain

Alternatives
:: Expression[2..*]
Composition
:: Expression[1..*]
Option
:: Expression

List
:: Expression minimum: Nat:=0 [maximum: Nat]

Set
:: Expression minimum: Nat:=0 [maximum: Nat]

Domain
:: Non-terminal-domain

 | Elementary-domain

 | Enumeration-domain
Non-terminal-domain
:: Name

Elementary-domain
:: Elementary-domain-kind [Default-elementary-value]
Elementary-domain-kind
= NAT | TOKEN | BOOLEAN | UNSPECIFIED
Default-elementary-value
= Token

Enumeration-domain
:: Quotation-set [Default-enumeration-value]
Default-enumeration-value
:: Quotation

Component-name
= Token

Name
= Token

There should normally be one Rule from which all each other Rule can be reached.

The same character string always maps to the same Token value and two different character strings map to different Token values. The character strings Token, Nat, Boolean and Informal-text shall not be used for a Name, because these are reserved for each of the respective domains.
A Name is a Token that is represented by character string starting with a letter, followed by any number of alphanumeric characters and single hyphens and terminating in an alphanumeric. Each Name of a Definition-rule or Equivalence-rule shall have a Token value distinct from the Token value of the Name of any other Definition-rule or Equivalence-rule.
A Non-terminal-domain has a Token that is represented by name starting with a letter, followed by any number of alphanumeric characters and single hyphens and terminating in an alphanumeric. The Name of a Non-terminal-domain shall have the same Token value as the Name of a Definition-rule or Equivalence-rule.

NAT, TOKEN, BOOLEAN and UNSPECIFIED are represented by Token, Nat, Boolean and Informal-text respectively.

A Default-elementary-value is a Token that is represented in the case of Nat (NAT) by a non-negative integer (a string of digits) and in the case of Boolean (BOOLEAN) by one of the strings TRUE or FALSE. If the Elementary-domain-kind of an Elementary-domain is Token or Informal-text assignment is not allowed and the Default-enumeration-value shall be omitted. If the Elementary-domain-kind of an Elementary-domain is Nat the Default-enumeration-value shall be a Token for an integer. If the Elementary-domain-kind of an Elementary-domain is Nat the Default-enumeration-value shall be a Token for a Boolean value.

Quotation is represented by bold face sequence of uppercase letters and digits, called a quotation in this paragraph. The same quotation always maps to the same Quotation value and two different quotations map to different Quotation values. The quotation for a Quotation shall not be the same as the character string for a Token. An Enumeration-domain is represented either by a single quotation or by a list of quotations separated by "|" characters. When a "|" character is between two quotations, it is a separator for an Enumeration-domain rather than for Alternatives. The Default-enumeration-value (if present) of a Enumeration-domain shall be one of the Quotation values in the Quotation-set of the Enumeration-domain.
Alternatives or Composition within an Expression that is Alternatives or Composition or List or Set are grouped by "{" and "}" brackets in the concrete notation.

The minimum Nat for a List or Set is the minimum number of elements, and the maximum Nat is the maximum number. If a maximum exists it must be greater than or equal to the minimum. If maximum is omitted there is no maximum number of elements. The notation for a list or set is explained above.

2.4.1.2 Metamodel presentation

The following describes an alternative to the textual presentation introduced in ‎2.4.1.1. This metamodel representation of the abstract syntax of ITU-T languages is explained using a meta-metamodel (‎Figure 1).

[image: image4.wmf]

M

eta

-

m

et

am

o

d

e

l

pack

a

ge

Z

1

11

{

1/1}

C

l

ass

n

a

m

e

 :

 T

ok

e

n

Attribu

t

e

Associat

i

o

n

E

n

d

m

u

lt

i

p

l

icit

y

Mi

n

 :

Na

t = 1

m

u

lt

i

p

l

i

cit

y

M

a

x

:

 N

at

=

1

[

0.

.

1]

isOrd

ered

 :

Bo

o

l

e

an

=

f

a

ls

e

isN

a

v

i

gab

l

e

 :

Bo

o

l

e

an

=

f

a

ls

e

isC

ompo

sit

e

 :

Bo

o

l

e

an

=

f

a

ls

e

en

d

en

dC

la

ss

1

en

d

T

y

pe

1

in

her

it

e

dF

r

o

m

0.

.

1

a

t

t

r

i

b

ut

e

 {

orde

r

e

d}

0..*

1

Associat

i

on

t

a

r

ge

t

1

1

s

o

urc

e

a

ss

o

ci

at

i

o

n

L

in

k

1

1

D

at

a

Ty

p

e

a

tt

r

i

b

ut

e

T

y

pe

1

E

nu

me

r

at

ed

Ty

p

e

Pr

i

miti

ve

Ty

p

e

D

efau

l

ltV

a

l

u

e

d

e

f

au

lt

Val

u

e

1

<<enu

m

era

t

i

on>>

Pr

i

miti

v

e

T

ok

e

n

N

a

t

B

o

o

l

e

a

n

Unsp

e

c

i

f

ie

d

To

k

en

E

nu

me

r

ati

o

n

Lite

r

al

li

te

r

a

l

{unordered}

1..*

1

0..*

0..*

0..*

n

a

m

e

 :

 T

ok

e

n

[

0.

.

1]

n

a

m

e

 :

 T

ok

e

n

m

u

lt

i

p

l

icit

y

Mi

n

 :

Na

t = 1

m

u

lt

i

p

l

icit

y

M

a

x

:

 N

at

 = 1

[

0.

.

1]

0..*

0.

.

1

v

a

l

ue

 :

T

o

k

e

n

n

a

m

e

 :

 T

ok

e

n

n

a

m

e

 :

 T

ok

e

n

n

a

m

e

1

n

a

m

e

1

Figure 1 Meta-metamodel for metamodeling language elements

The meta-metamodel elements described below are represented using MOF

 in Figure 1 except were noted otherwise.

In the following a Named element is a meta-class that contains a name attribute of the meta-class Token. Some Token values represent Nat values (that is non-negative Integers), and two distinct Token values represent the Boolean true and false values. These Token values for Nat and Boolean shall only be used in the value of a DefaultValue and shall not be used for the Token value of any name. When deriving the Token from a character string in the concrete notation, the Token value depends on the character string and the case of letters in the character-string are taken into account. The same character string in the concrete notation for names shall always produce the same Token, so that constraints on Token values are constraints on character string in the concrete notation for the name attributes. Two name attributes are the same if they have the same Token value, otherwise they are distinct.
i)
Class is a Named element that contains one or more Attribute items and can participate in binary Association relations via one or both of the AssociationEnd attributes of each Association. A Class can inherit the Attribute and AssociationEnd (and hence Association) items from another Class (single inheritance only).

Each Class shall have a name with a Token value that is distinct from the Token value for the name of any other Class (including predefined primitives), or any Enumeration.

The inheritedFrom attribute
(if present) of Class references the parent Class of a Class. An inherited Class of a Class is either the parent Class or any inherited Class of the parent Class, transitively. A Class shall not have itself as an inherited Class. The attribute list of a Class includes the attribute list of the parent Class, so that the same Attribute shall be referenced by each element of the attribute list of the parent Class and the corresponding (by order) element of the attribute list of the Class. A Class that inherits from a parent Class includes each end reference to an AssociationEnd of parent Class and is the endClass of the AssociationEnd. A Class that inherits from a parent Class is referenced as an endType by each AssociationEnd that references the parent Class as an endType.

The name (if present) of each AssociationEnd that has an end in a given Class shall be distinct from the Token value for the name (if present) of any AssociationEnd that has an end in the Class or any inherited Class.

iii)
Attribute is a Named element. It is a meta-class for an ordered element of a Class that has a DataType and an optional DefaultValue.

The name of each attribute of a given Class shall be distinct from the name of any other attribute of the Class or any inherited Class and shall also be distinct from the name (if present) of any AssociationEnd that has an end in the Class or any inherited Class.

The multiplicity of an Attribute is given by multiplicityMin and multiplicityMax, which have default values of 1 if they are omitted in concrete notation. However, if in the concrete notation the maximum is given by “*”, the maximum is empty and there is no upperbound on the number of Attribute instances. If multiplicityMax is present it shall be greater than 1 and greater and equal to multiplicityMin.

If a DefaultValue is present, its Token value shall represent a value of the DataType of the Attribute (that is, it shall be true or false for a Boolean, a non-negative Integer for a Nat, or a quotation Literal for an Enumeration). If the Attribute has a DataType that is a PrimitiveType with the name value Privimitive for the predefined Token or Unspecified type, the DefaultValue shall be absent.

iv)
DataType is a meta-class that is either a PrimitiveType or an EnumeratedType.
iii)
PrimitiveType is a DataType where the type is predefined (one of Token, Nat, Boolean, Unspecified) primitive identified by the Primitive value of the name attribute of the PrimitiveType. The Token a meta class with an unlimited number of distinct values, including values that represent Nat values (that is non-negative Integers), and two distinct Token values represent the Boolean true and false values. Unspecified is a primitive that might have some representation, but for which the representation is of no concern in the language Recommendation.

vi)
EnumeratedType is a DataType where the type is an Enumeration identified by name attribute.

iv)
Enumeration is a Named element that represents a (quotation) DataType whose values are represented by a set of literal elements.

Each Enumeration shall have a name with a Token value that is distinct from the Token value for the name of any other Enumeration or any Class (including predefined primitives).

v)
Literal is a Named element contained in an Enumeration that is one of the values of an Enumeration. The name of each literal of an Enumeration shall be distinct for any other literal of the Enumeration, but it is permitted for a the name to be the same as the literal of another Enumeration.

vii)
DefaultValue is a meta-class for the optional component of an Attribute that identifies a default value of the appropriate type (see Attribute).

viii)
Association is a meta-class for the relation between Class meta-classes. It has two AssociationEnd attributes (source and target) for the logical connection of the Association with the related Class meta-classes.

An Association shall have at least one AssociationEnd that is navigable (isNavigable = true). An Association is represented by a line in the concrete notation. An Association navigable in only one direction is represented by a line with an arrow on the navigable end.

ix)
AssociationEnd is a meta-class for the end of an Association. It has Boolean attributes that determine if the AssociationEnd is composite (isComposite), navigable (isNavigable) or ordered (isOrdered). If the AssociationEnd is navigable (isNavigable = true), the name shall not be empty, and the name (which corresponds to the role name of the AssociationEnd) shall be distinct from the name of any other AssociationEnd that is an end of the Class that is the source of the AssociationEnd.

An AssociationEnd shall not be both the source and target of an Association. In the following, an AssociationEnd that is the source of an Association is called a source AssociationEnd, and an AssociationEnd that is the target of an Association is called a target AssociationEnd.

The Class of the endType of a source AssociationEnd is derived and is the same as the Class of the endClass of the target AssociationEnd of the Association that is the source of the source AssociationEnd. The Class of the endType of a target AssociationEnd is also derived and is the same as the Class of the endClass of the source AssociationEnd of the Association that is the target of the target AssociationEnd.
 More
 formally:

source AssociationEnd.endType = AssociationEnd.associationlink.target.endClass and

target AssociationEnd.endType = AssociationEnd.associationlink.source.endClass.

A source AssociationEnd is allowed to be composite (isComposite = true), and in this case the Class with the source AssociationEnd as an end has as a component an item
(or a collection of items – see multiplicity) with the endType of the source AssociationEnd. A Class with a non-composite source AssociationEnd, is related (by the Association) to an item or collection with the endType of the source AssociationEnd. In the concrete notation an AssociationEnd that is composite is represented by filled diamond at the AssociationEnd that is the source.

The AssociationEnd that is the target of an Association shall not be composite (isComposite = false).

An AssociationEnd has a multiplicity defined by the values of the multiplicityMin and multiplicityMax, which are natural numbers. Although default values are given for the values, it is not allowed to omit the values in the concrete notation
. If in the concrete notation the maximum is given by “*”, the maximum is empty and there is no upperbound on the number of instances. If multiplicityMax is present it shall be greater than 1 and greater and equal to multiplicityMin.

If multiplicityMax is larger than 1 or omitted, the AssociationEnd denotes a collection of items. By default, this collection is ordered (isOrdered = true)
 so the collection is a list. If the collection is not ordered (isOrdered = false) the collection will normally be a set (but is allowed be a bag). In a set each item in the collection has a different value. In a bag there may be any number of items with the same value.

Several modelling elements commonly used in class diagrams should be avoided when describing meta-models. These include:

–
Packages: A structuring mechanism that does not add semantic value at the abstract level.

–
Visibility of attributes and association ends: This has no impact on the abstract model as it is hidden.

–
Default association multiplicities: to avoid ambiguities in the understanding of default multiplicities (according to standards or people), multiplicities at association ends are required to be explicit.

–
Multiple inheritance: May require name resolution and hence should be avoided.

–
Operations: Not usually needed in the abstract model. Operations on model elements (in a language such as OCL) are useful to describe constraints formally, but constraints should also be expressed in natural language as well as formally so the intent can be captured.

–
Abstract classes: Not needed because the mapping between a concrete syntax and an abstract syntax can prevent the instantiation of such classes.

–
Interfaces: Not needed since there are no operations on instances.

–
Do not include layout elements (graphical information such as colour, positions, shapes, sizes)

2.4.2 Metalanguage for the Concrete Grammar

In the Backus-Naur Form (BNF) for lexical rules, the terminals are <space> and the printed characters specified as terminal symbols by the defined language.

In the Backus-Naur Form for non-lexical rules, a terminal symbol is one of the lexical units defined to be terminal. In non-lexical rules, a terminal can be represented by one of the following:

a)
a keyword (such as state);

b)
the character for the lexical unit if it consists of a single character (such as "=");

c)
the lexical unit name (such as <quoted operation name> or <bit string>);

d)
the name of a <composite special> lexical unit (such as <implies sign>).

To avoid confusion with BNF grammar, the lexical unit names <asterisk>, <plus sign>, <vertical line>, <left square bracket>, <right square bracket>, <left curly bracket> and <right curly bracket> are always used rather than the equivalent characters. Note that the two special terminals <name> and <character string> may also have semantics stressed as defined below.

The angle brackets and enclosed word(s) are either a non‑terminal symbol or one of the lexical units. Syntactic categories are the non‑terminals indicated by one or more words enclosed between angle brackets. For each non‑terminal symbol, a production rule is given in the concrete grammar. For example,

<block reference> ::=

block <block name> referenced <end>

A production rule for a non‑terminal symbol consists of the non-terminal symbol at the left-hand side of the symbol "::=", and one or more constructs, consisting of non‑terminal and/or terminal symbol(s) at the right-hand side. For example, <block reference>, <block name> and <end> in the example above are non‑terminals; block and referenced are terminal symbols.

Sometimes the symbol includes an underlined part. This underlined part stresses a semantic aspect of that symbol. For example, <block name> is syntactically identical to <name>, but semantically it requires the name to be a block name.

At the right-hand side of the "::=" symbol, several alternative productions for the non-terminal can be given, separated by vertical bars ("|"). For example,

<diagram in package> ::=

<package diagram>

|
<package reference area>

|
<entity in agent diagram>

|
<data type reference area>

|
<signal reference area>

|
<procedure reference area>

|
<interface reference area>

|
<create line area>

|
<option area>

expresses that a <diagram in package> is a <package diagram>, or a <package reference area>, or an <entity in agent diagram>, or a <data type reference area>, or a <signal reference area>, or a <procedure reference area>, or an <interface reference area>, or a <create line area> or an <option area>.

Syntactic elements may be grouped together by using curly brackets ("{" and "}"), similar to the parentheses in Meta IV (see ‎2.4.1). A curly bracketed group may contain one or more vertical bars, indicating alternative syntactic elements.

Repetition of syntactic elements or curly bracketed groups is indicated by:

suffix "[n..m]" the group is repeated between n and m items, where n is an integer >=0, m is a positive integer >= n;

suffix "[n]" the group is repeated exactly n items, where n is a positive integer – equivalent to [n..n];
suffix "[n..*]" the group is repeated at least n items, where n is a positive integer;

suffix "*" the group is optional and repetition any number of times is allowed – equivalent to the suffix [0..*];

suffix "+" the group shall be present and repetition any number of times is allowed – equivalent to the suffix [1..*].
 For example,

<operation definitions> ::=

{
<operation definition>

|
<operation reference>

|
<external operation definition> }+

The example above expresses that <operation definitions> may contain zero or more definitions of <operation definition> or <operation reference> or <external operation definition>, and may contain more than one of any of these.

A repetition suffix can include a list separator after the repetition. If the repetition uses square brackets ("[" and "]"), a vertical bar ("|") is placed before the closing square bracket ("]") and the separator is placed between the vertical bar ("|") and the closing square bracket ("]"). If the repetition suffix is an asterisk ("*") or plus sign ("+"), it is followed by an opening square bracket and vertical line pair ("[|") the separator and then a closing square bracket ("]"). For example,

<two or more declarations> ::=

{
<name>+[|,] : <type> }[2,*| ;]

The example above expresses that <declaration list> contains at least two and possibly many repetitions separated by semicolons of the sequence: <name> list separated by commas, colon and <type>. This is equivalent to following syntax that uses plain repetition (without separators) where <name> is repeated:

<two or more declarations> ::=

<name> { , <name> }* : <type>

{ ;
<name> { , <name> }* : <type> }+

The can also be expressed using recursion instead of repetition as:

<two or more declarations> ::=

<name list> : <type> ; { <name list> : <type> | <declaration list> }

<name list> ::=

 { <name> | <name> , <name list> }

If syntactic elements are grouped using square brackets ("[" and "]"), then the group is optional. For example,

<valid input signal set> ::=

signalset [<signal list>] <end>

expresses that a <valid input signal set> may, but need not, contain <signal list>. An optional grouping is equivalent to a repetition suffix [0..1].

If there is any ambiguity between an optional group and the use of square brackets ("[" and "]") for a repetition suffix, it is a repetition unless there is at least one layout character (such as a space) before the "[" in which case it is an optional group.

To support the graphical grammar, the metalanguage has the following metasymbols:

a)
set
b)
contains
c)
is associated with
d)
is followed by
e)
is connected to
f)
is attached to

The set metasymbol is a postfix operator operating on the immediately preceding syntactic elements within curly brackets, and indicating an (unordered)
set of items. Each item may be any group of syntactic elements, in which case it must be expanded before applying the set metasymbol.

Example:

{ <operation text area>* <operation body area> } set
is a set consisting of zero or more <operation text area>s, and one <operation body area>. The set metasymbol is used when the position of the syntactic elements relative to one another in the diagram is irrelevant and the elements can be considered in any order.

All the other metasymbols are infix operators, having a graphical non-terminal symbol as the left-hand argument. The right-hand argument is either a group of syntactic elements within curly brackets or a single syntactic element. If the right-hand side of a production rule has a graphical non-terminal symbol as the first element and contains one or more of these infix operators, then the graphical non-terminal symbol is the left-hand argument of each of these infix operators. A graphical non-terminal symbol is a non-terminal ending with the word "symbol".

The metasymbol contains indicates that its right-hand argument should be placed within its left‑hand argument and the attached <text extension symbol>, if any. The right-hand argument is expanded within the symbol, should not cross the symbol boundaries and is distinct from any occurrence of the same syntax in another rule. For example,

<package use area> ::=

<text symbol> contains <package use clause>

<text symbol> ::=

[image: image5.wmf]
means the following

[image: image6.wmf]<

package use clause>

The metasymbol is associated with indicates that its right-hand argument is logically associated with its left-hand argument (as if it were "contained" in that argument, the unambiguous association is ensured by appropriate drawing rules). The right-hand argument is expanded and is distinct from any occurrence of the same syntax in another rule.

The metasymbol is followed by means that its right-hand argument follows (both logically and in drawing) its left-hand argument. The right-hand argument is expanded at the end of the implied symbol, and is distinct from any occurrence of the same syntax in another rule.

The metasymbol is connected to means that its right-hand argument is connected (both logically and in drawing) to its left-hand argument
. The right-hand argument is expanded, and is distinct from any occurrence of the same syntax in another rule (in contrast to is attached to below).

The metasymbol is attached to expresses syntax requirements but not syntax productions. The metasymbol is attached to requires its right-hand argument and left-hand argument be attached to each other (both logically and in drawing)
, but one argument is not expanded with the syntax for the other argument, but each shall exist as separate expansions from syntax rules (in contrast to is connected to above). Being attached is mutual, so that A is attached to B is always matched in the syntax by another rule where B is attached to A, though this need not be directly expressed on B. For example, B may have alternatives B1 and B2 each of which is attached to A. Being attached will usually mean that the abstract syntax for each side contains the identifier of the other side.

 Appendix I. Metamodel generated from the grammar of the textual presentation

[image: image7.emf]name: Token

Terminal

Symbol

name: Token

Name

Assignment

1..*

Expression

Alternative

Composition

name: Token

Rule

Option

List

List1

Set

Set1

1..*

1

name: Token

Alias

0..*

0..1

1

Token

Nat

Quotation

Boolean

Unspecified

«enumeration»

Primitive

1

1

1

1

1

1

1

1

1

1

name: Token

Nonterminal

1..*

name: Token

Enumeration

1

1

name: Token

Datatype

1

Figure 2 Metamodel for the textual presentation.

Appendix II. Grammar generated from the metamodel presentation

Example: The following example captures the grammar described by the graphical presentation in ‎Figure 1:

Class
:: Token [inheritsFrom] end* attribute*

inheritsFrom
= Class-name
attribute
= Attribute
end
= AssociationEnd-name
Attribute
:: name multiplicityMin:=1 multiplicityMax:=1 default attributeType
name
= Token

multiplicityMin
= Token

multiplicityMax
= Token

attributeType
= DataType-name
default
= DefaultValue
DefaultValue
:: name

DataType
:: EnumeratedType | PrimitiveType
Association
:: source target

source
= AssociationEnd
target
= AssociationEnd
AssociationEnd

:: [name] multiplicityMin multiplicityMax isOrdered:=false

 isComposite:=false isNavigable:=false association class associationEndType
isOrdered
= Boolean

isNavigable
= Boolean

isComposite
= Boolean

associationEndType
= Class-name
class
= Class-name
association
= Association-name
Enumeration
:: literals+set
Literals
= Literal
Literal
:: name

Primitive
:: TOKEN | NAT | QUOTATION | BOOLEAN | UNSPECIFIED

EnumeratedType
:: name
PrimitiveType
:: primitive

primitive
= Primitive

Appendix III.
Example: The Mapping from textual to metamodel presentations

The following gives the mapping from the concepts in the textual abstract syntax to the metamodel.

Before any Definition-rule is mapped, any contained Non-terminal that corresponds to an Equivalence-rule is replaced by the Expression of the Equivalence-rule, except in the case the Expression is an Enumeration-domain. In this special case, the Equivalence-rule maps to an Enumeration and the Non-terminal maps to and Attribute.
A Definition-rule maps to a Class: The Name maps to Class.name; the optional Non-terminal maps to Class.inheritsFrom.

If the Expression of a Definition-rule is omitted, the corresponding Class has no attribute and no end relationship with an AssociationEnd. Otherwise the Class.attribute and Class.end elements are derived from the Expression, which are given arbitary unique name values so that the constraints on the naming are met.

If the Expression of a Definition-rule is a Symbol that contains a Non-terminal, the Symbol is mapped to an Association, Association.source AssociationEnd and Association.target AssociationEnd where:

-
the Association.source is a Class.end of the Class mapped from the Definition-rule containing the Symbol and has multiplicityMin = 1, multiplicityMax = 1, isOrdered = false, isNavigable = false, and isComposite = true.

-
the Association.target is a Class.end of the Class corresponding to the Non-terminal and has multiplicityMin = 1, multiplicityMax = 1, isOrdered = false, isNavigable = true, and isComposite = false.

If the Expression of a Definition-rule is a Symbol that contains a Elementary-domain, the Symbol is mapped to an Attribute with multiplicityMin = 1, multiplicityMax = 1, and the attributType is the Datatype mapped from the Elementary-domain-kind (NAT, TOKEN, BOOLEAN and UNSPECIFIED map to the PrimitiveType with the name value Nat, Token, Boolean and Unspecified repectively). If there is a Default-elementary-value there is a DefaultValue with a value with the corresponding Token for the value, otherwise the DefaultValue is empty.

If the Expression of a Definition-rule is a Symbol that contains a Enumeration-domain, the Symbol is mapped to an Attribute with multiplicityMin = 1, multiplicityMax = 1, and the attributType is the Datatype mapped from the EnumeratedType mapped from the Quotation-set. If there is a Default-enumeration-value there is a DefaultValue with a value with the corresponding Token for the value, otherwise the DefaultValue is empty.

A Quotation-set maps to an Enumeration where each Quotation maps to a different literal of the Enumeration with the name value of the Literal being a Token corresponding to the Quotation. The Enumeration is given an arbitrary name value, except where the Quotation-set is part of an Enumeration-domain contained in a Symbol that is the Expression of an Equivalence-rule. In this case, the name of the Equivalence-rule maps to the name of the Enumeration.

Class.attribute and Class.end are unnamed and derived from Expression: This derivation returns a set or a set formed from a single element, and each member is either an attribute or an association end. A member is an attribute if it is a Terminal, or the Name of a nonterminal defined as an alternative of terminal symbols, or it is an Assignment. If the member is a Name of a nonterminal defined otherwise, isComposite is false. If the member is a Nonterminal, then isComposite is true. If an element is an association end, isNavigable is true. If an element is an association end with isComposite = true, the other end has both MultiplicityMin and MultiplicityMax set to 1. If an element is an association end with isComposite = false, the other end, and there are no constraints on the other end, and the other end has isNavigable = false, then the other end has MultiplicityMin set to 0 and MultiplicityMax set to *.

An Alias corresponds to an attribute or association end name: The name corresponds to Class.attribute.name or Class.end.name. The details of Class.attribute and Class.end are derived from Expression as stated in the previous paragraph.

An Alternative where all members are non-terminal symbols corresponds to an AssociationEnd where self.type is an unnamed Class, such that all the alternate elements inherit from that class. An Alternative where all members are terminal symbols corresponds to an AssociationEnd where self.type is an Enumeration such that each terminal symbol is a Literal in the enumeration. Mixed forms are not allowed.

An Composition corresponds to the set of its elements.

A Option corresponds to an attribute or association end where multiplicityMin is 0 and multiplicityMax is 1.

A List corresponds to an attribute or association end where multiplicityMin is 0 and multiplicityMax is *, and isOrdered is true.

A List1 corresponds to an attribute or association end where multiplicityMin is 1 and multiplicityMax is *, and isOrdered is true.

A Set corresponds to an attribute or association end where multiplicityMin is 0 and multiplicityMax is *, and isOrdered is false.

A Set1 corresponds to an attribute or association end where multiplicityMin is 1 and multiplicityMax is *, and isOrdered is false.

An Expression corresponds to an AssociationEnd where its type is an unnamed Class which is constructed as if Expression was the Expression of a Nonterminal.

A Symbol corresponds to an attribute or association end where multiplicityMin is 1 and multiplicityMax is 1. If the symbol was a Nonterminal defined by an Alias, the nonterminal symbol represents the name of the attribute or association end.

An Name corresponds to a Class defined by a rule with the corresponding left-hand-side nonterminal symbol or to the name of a Terminal.

A Nonterminal corresponds to a Class if it was the left-hand-side of a Rule. Otherwise, the Nonterminal represents what is constructed from the right-hand-side of the Alias.

A Terminal corresponds to a PrimitiveType.
An Assignment corresponds to a Datatype together with a DefaultValue. The data type is either a PrimitiveType if it was a Terminal, or otherwise the Name must be the name of an enumerated type, in which case the data type is an EnumeratedType.

1. Rule

The metamodel generated by this procedure from the textual presentation of the abstract syntax in Section ‎2.4.1.1 is shown in Appendix I.

Appendix IV.
Example: The Mapping from metamodel to textual presentations

The following gives the mapping from the concepts in the metamodel presentation of the abstract syntax to the textual representation of the abstract syntax.

A Class corresponds to a Rule. The name corresponds to the Token. The class referenced by inheritsFrom corresponds to the Nonterminal, if any. The set of attribute and association end corresponds to the Expression.

If the Attribute or AssociationEnd is named, this corresponds to an Alias, where Token is derived from name and the current class name and the attribute or association end constructs the Expression of the alias as in the following, and name corresponds also to Symbol in the outer Expression. If the name is unique, it corresponds to Token. Otherwise, the Expression is constructed as follows.

If multiplicityMin of an Attribute or AssociationEnd is 0 and multiplicityMax of this Attribute or AssociationEnd is 1, and isNavigable is true, this corresponds to an Option, where Expression is a Symbol corresponding to the type of the attribute or association end.

If multiplicityMin of an Attribute or AssociationEnd is 0, and multiplicityMax of this Attribute or AssociationEnd is *, and isOrdered of this Attribute or AssociationEnd is true, and isNavigable is true, this corresponds to a List, where Expression is a Symbol corresponding to the type of the attribute or association end.

If multiplicityMin of an Attribute or AssociationEnd is 1, and multiplicityMax of this Attribute or AssociationEnd is *, , and isOrdered of this Attribute or AssociationEnd is true, and isNavigable is true, this corresponds to a List1, where Expression is a Symbol corresponding to the type of the attribute or association end.

If multiplicityMin of an Attribute or AssociationEnd is 0, and multiplicityMax of this Attribute or AssociationEnd is *, and isOrdered of this Attribute or AssociationEnd is false, and isNavigable is true, this corresponds to a Set, where Expression is a Symbol corresponding to the type of the attribute or association end.

If multiplicityMin of an Attribute or AssociationEnd is 1, and multiplicityMax of this Attribute or AssociationEnd is *, , and isOrdered of this Attribute or AssociationEnd is false, and isNavigable is true, this corresponds to a Set1, where Expression is a Symbol corresponding to the type of the attribute or association end.

If multiplicityMin of an Attribute or AssociationEnd is 1 and multiplicityMax of this Attribute or AssociationEnd is 1, and isNavigable is true, this corresponds to a Symbol, such that the Symbol is corresponding to the type of the attribute or association end.

If isComposite of an AssociationEnd is false, then the Symbol is a Name otherwise the Symbol is a Nonterminal.

If an Attribute has a default, then this generates an Assignment, where DefaultValue corresponds to Terminal and the name of the type of the Attribute corresponds to Token.

Any multiplicityMin and multiplicityMax on an AssociationEnd where isNavigable is false and which is not both 1 in the case where isComposite is true or is otherwise 0 and *, respectively, generates a constraint on the respective element.

An Enumeration corresponds to a Nonterminal where the name corresponds to Token, and Expression is an Alternative where each Symbol is a Terminal corresponding to the literals.

Appendix II shows the textual grammar for the abstract syntax that is obtained by this procedure for the metamodel in ‎Figure 1.

Example: Appendix 1 shows the textual grammar for the abstract syntax that is obtained by this procedure for the metamodel for UCM.

Appendix 1. Concrete grammar generated from metamodel definition of UCM

The UCM metamodel is taken from TD3044. The elements related to GRL were omitted, as were the elements related to performance (p.5 of TD3044) as these did not introduce any new concepts and are not essential to the understanding of the UCM grammar or this translation procedure.

URNdefinition
:: responsibilities* components*
responsibilities
= Responsibility

components
= ComponentElement

UCMmodelElement
:: id name

id
= String

name
= String

ComponentElement (UCMmodelElement) ::

 [includingComponent] compRefs+
includingComponent
= ComponentRegular-name
compRefs
= ComponentRef-name
ComponentRegular (ComponentElement) ::

 kind protected:=false slot:=false includedComponent*
kind
= ComponentKind

protected
= boolean

slot
= boolean

includedComponent
= ComponentElement-name
Pool (ComponentElement)
:: ofComponents:=false content [componentType] dynResponsibilties*
ofComponents
= boolean

content
= String

componentType
= ComponentType-name
dynResponsibilities
= DynamicResponsibility-name
ComponentType (ComponentRegular)
:: [superType] subType* instances* pools*
superType
= ComponentType-name
subType
= ComponentType-name
instances
= Component-name
pools
= Pool-name
Component (ComponentRegular)
:: [componentType]
componentType
= ComponentType-name
Responsibility (UCMmodelElement)
:: respRefs+
respRefs
= RespRef-name
DynamicResponsibility (Responsibility) ::

 kind toPath arrowLength [pool]
kind
= DynamicRespKind

toPath
= boolean

arrowLength
= int

pool
= Pool-name
ComponentKind
:: Team | Object | Process | Agent | Actor | Other

DynamicRespKind
:: Move | MoveStay | Create | Copy | Destroy

ComponentRef (UCMmodelElement)
:: role replicationFactor:=1 anchored:=false fixed:=false
 children* [parent] pathNodes*
role
= String

replicationFactor
= int

anchored
= boolean

fixed
= boolean

children
= ComponentRef-name
parent
= ComponentRef-name
pathNodes
= PathNode-name
UCMspec
:: maps+ roof+ variables* scenarioGroups* scenarioDefs*
maps
= Map

roof
= Map-name
variables
= Variable

scenarioGroups
= ScenarioGroup

scenarioDefs
= ScenarioDef

Map (UCMmodelElement)
:: compRefs* parentStub* [pathGraph]
compRefs
= ComponentRef

parentStub
= PluginBinding-name
pathGraph
= PathGraph

Constraints: [1] For each Map m, there is at most one UCMSpec u such that u.roof = m.

PluginBinding
:: plugin in+ out+ id repetitionCount probability:=1.0 [precondition]
plugin
= Map-name
in
= InBinding

out
= OutBinding

repetitionCount
= int

probability
= double

precondition
= Condition

StartPoint (PathNode)
:: inBindings* [precondition]
inBindings
= InBinding-name
InBinding
:: startPoint stubEntry

startPoint
= StartPoint-name
stubEntry
= NodeConnection-name
EndPoint (PathNode)
:: outBindings* [postcondition]
outBindings
= OutBinding-name
postcondition
= Condition

OutBinding
:: endPoint stubExit

endPoint
= EndPoint-name
stubExit
= NodeConnection-name
Timer
:: [timeoutPath]
timeoutPath
= NodeConnection-name
NodeConnection
:: inBindings* outBindings* target source probability:=1.0 [condition]
inBindings
= InBinding-name
outBindings
= OutBinding-name
target
= PathNode-name
source
= PathNode-name
condition
= Condition

PathNode (UCMmodelElement)
:: pred* succ* [compRef]
pred
= NodeConnection-name
succ
= NodeConnection-name
compRef
= ComponentRef-name
Stub (PathNode)
:: dynamic:=false shared:=false bindings*
dynamic
= boolean

shared
= boolean

bindings
= PluginBinding

RespRef (PathNode)
:: repetitionCount respDef

respDef
= Responsibility

Abort (PathNode)
:: .

OrFork (PathNode)
:: .

AndFork (PathNode)
:: .

OrJoin (PathNode)
:: .

AndJoin (PathNode)
:: .

Timestamp (PathNode)
:: .

FailurePoint (PathNode)
:: .

Connect (PathNode)
:: .

Loop (PathNode)
:: exitCondition

exitCondition
= Condition

WaitingPlace (PathNode)
:: waitType

waitType
= String

Timer (WaitingPlace)
:: timeoutCondition timerVar

timeoutCondition
= Condition

timerVar
= Variable-name
Condition
:: expression

expression
= String

Variable (UCMmodelElement)
:: variableType:="boolean" usages*
variableType
= String

usages
= Condition-name
Constraints: [1] For each Variable v, there is at most one Timer t such that t.timerVar = v.

ScenarioGroup (UCMmodelElement)
:: scenarios*
scenarios
= ScenarioDef-name
ScenarioDef (UCMmodelElement)
:: groups+ startPoints+
groups
= ScenarioGroup-name
startPoints
= StartPoint-name

�Appendices are fine. Need a lot of cleanup if they are to be included.

�Shouldn’t this be MOF? Reference needed?

�It is not a ‘named element” as in UML sense: it is not inherited as it is in UML. This comment applies for all items with names.

� Why does it need a name? Could rely on the attributes being ordered. A name is not used in the textual form, so this could be optional. On the other hand maybe the textual form should include a name so the name can be used in formal constraints.

� Optional attributes are not captured in the meta-metamodel. Is it needed? (probably not - the multiplicity can be 0..1).

� Isn’t it easier just to order the attributes?

�This is not defined.

� Don’t think Quotation is needed.

� Enumeration did not seem to be used anywhere.

� It is not clear what this is. It is assumed that this can refer (by name) to a Class and maybe a Enumeration for a Quotation.

� Or (one assumes) a Class, otherwise there is no way of having a component that is of another Class.

�These appeared as Token rather than Nat in fig.1

� This is a matter of opinion. The alternative is to express the operation in natural language with the possibility of misunderstanding and ambiguity. A good language definition should include the natural language description and also a formal description of the operations to be used for constraints and navigation.

�Really? It uses a UML syntax for showing the meta-metamodel (which happens to be MOF-compliant I think), but this graphical syntax comes from UML, not MOF.

�Not sure what is meant here.

�Granularity is not clear. I guess it will be permitted for a MM-based abstract syntax to have a class diagram covering several related classes and then these subclauses for each concept/class

�What if we use MM?

�What if we use MM?

�Confusing name for a subclause! Why not simply Shorthand notation?

�May need to say something about the character set used to describe names in MM, or use the same restrictions.

�Cut&paste error? Probably Dash-nextstate | Named-nextstate

�Note: no longer optional.

�Example of where this is or could be used?

�A Definition-rule can simply be a Name?

Non-terminal is missing

Should Name be in Rule?

�

Need to revise {ordered} vs {unordered}(default is ordered?)

 Association: 0..1 multipliticities (AssociationEnd cannot be contained twice). Also, strange to see it contains something (source) it cannot navigate.

 Multiplicities are missing (0..* for EnumeratedType and PrimitiveType)

 What is the purpose of the endType association?

 What is the Token class? Not discussed (not needed?)

 DefaultValue (one ‘l’)

 I would hesitate to remove ‘name’ in Attribute

� This has been updated and redrawn (using Tau G2).

It is assumed Enumeration is needed for Quotations.

MultiplicityMin and MultiplycityMax have been changed to Nat because ‘= 1’ only really makes sense for Nat values.

No default values were given for the multiplicity of association ends – although it is required they should be given explicitly in the concrete notation, the defaults should given here.

It was not clear how an unbounded multiplicity would be shown – so MultiplycityMax was made optional and if omitted it is unbounded.

The association roles class, type, association, and default were renamed (because these are reserved names in Tau G2). The role literals was renamed to literal.

It was considered to remove ‘name’ in Attribute because arguably this is not needed: the attributes could be ordered and the attribute determined by the name of it’s DataType (EnumeratedType or PrimitiveType) or it’s position in the ordering. If two unnamed components have the same DataType they can be distinguished by their order.

The multiplicity of attribute should be at least one or the Class should inherit from another Class, so that the Class is defined as something,.

Quotation is removed from Primitive, because an attribute is never of the type Quotation. Instead it ia an EnumeratedType that corresponds to an Enumeration. The Enumeration has the quotation values as literal attributes. However, the EnumeratedType name:Token was changed to name:Enumeration to reference the Enumeration.

Token was undefined – so it was added.

� Was UML.

�Should probably be UML…

�I suppose we need to be careful when calling associations ends “attributes”. There are several instances of this issue in this section.

�Is this the purpose of endType?

�It is not really clear why these names should differ from the AssociationEnd names.

�We could also simply use associations for this purpose.

�As this is derived, is it actually needed?

�Good question!

�Not sure what this means.

�Contradicts what is said elsewhere as well as the meta-metamodel displayed.

�If true, revisit the meta-metamodel

�Again.

� This is a matter of opinion. I have rewritten this.

� This has been extended with repetition with numerical constraints and stating list separators, but there is still a need to be able to specify extensible syntax.

�What is the difference?

�This is confusing. Really needed?

�Examples for these four metasymbols would be highly appreciated (e.g., applied to a subset of class diagrams as a concrete syntax for the metagrammar).

How to use this in combination with a metagrammar and a metamodel?

�In line with meta-metamodel assumptions?

� This is the old version and is not consistent with revisions. In any case as this is generated, it should be informative rather than normative and therefore should be an Appendix.

�The attribute names do not result from the translation. Delete.

� This is the old version – not consistent with revisions. In any case as this is generated, it should be informative rather than normative and therefore should be an Appendix.

� It is suggested NOT to include this Appendix.

�This algorithm needs to be translated into English, as it currently expresses the conversion in a Perl like syntax. Nevertheless it is more precise than the current English text (which is kept in the footnote for reference). We may want to keep this algorithm in a non-normative Appendix. Note that this algorithm is a little loose with respect to the ordering of rules, but it gets the basic message across.

� This is revised text.

� This is unrevised text that appeared as a footnote.

� There was a ‘Perl-like’ algorithm here but for the time being I have deleted it.

� This is out of date.

� It is suggested NOT to include this Appendix.

	Contacts:
	Thomas Weigert, Q.13/17 Rapporteur
Motorola, Inc.

United States of America
	Tel:
+1 847 576 2174

Fax:
+1 847 576 3280

Email:
thomas.weigert@motorola.com

	
	Rick Reed, Q.11/17 Rapporteur
TSE Limited

United Kingdom
	Tel:
+44 15394 88462

Fax:
+44 15394 88218

Email:
rickreed@tseng.co.uk

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of the ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU-T.

3
TDY21r1_draft_Z111.doc
12.12.06

_1174783299.vsd

_1207597766.vsd

_1091367948.doc

Meta-metamodel

package Z111 {1/1}

Class

name : Token

Attribute

0..*

multiplicityMax : Nat = 1 [0..1]

multiplicityMin : Nat = 1

name : Token

AssociationEnd

name : Token [0..1]

multiplicityMin : Nat = 1

multiplicityMax : Nat =1 [0..1]

isOrdered : Boolean = false

isNavigable : Boolean = false

isComposite : Boolean = false

end

endClass

1

1

1

endType

1

name

inheritedFrom

0..1

0..*

0..*

attribute {ordered}

0..*

1

Association

target

1

1

source

associationLink

1

1

0..*

DataType

attributeType

1

EnumeratedType

name

PrimitiveType

name : Token

value : Token

DefaulltValue

defaultValue

1

0..1

<<enumeration>>

Primitive

Token

Nat

Boolean

Unspecified

Token

Enumeration

name : Token

Literal

literal�{unordered}

1..*

1

_1092304165.doc

A

B

0..1

bname

0..1

C

0..1

0..1

cname

<<choice>>

_1174783151.vsd

_1030638310.doc

_1084036179.doc

<package use clause>

