Overview of the URN Metamodel

The following sections are extracts from Jean-François Roy’s thesis and Jason Kealey’s thesis, and give an overview of the URN metamodel. The URN standard would include both an abstract metamodel (the URN abstract grammar) and a concrete implementation-level metamodel. They would need to be described in a way compatible with the spirit of draft ITU Recommendation Z.111 on language definitions. This means moving away from EMF/Java specifics (used in these metamodels), including implementation data types, packages, and interfaces. The complete implementation-level metamodel used in jUCMNav can be found online at http://www.site.uottawa.ca/~damyot/urn/URNMetamodelHTML/index.html
1.1 An Integrated URN Metamodel

This section presents two distinct metamodels for URN: an abstract metamodel and its refinement into an implementation metamodel. They split the core URN concepts from graphical layout information and elements/attributes which have no semantic impact.

1.1.1 Abstract URN Metamodel

The following abstract metamodel, visualized as a UML class diagram, defines the abstract syntax of URN, independently of how diagrams are visualized. It defines what GRL and UCM diagrams are (respectively GRLGraph and UCMmaps). A URN model has one or more diagrams (GRL or UCM). To support multiple diagrams, the metamodel distinguishes definitions of global elements and references to element definitions local to diagrams. Those concepts allow having multiple references sharing the same definition.

Figure 1 defines concepts for GRLGraph. A graph is a composition of GRLNodes, ActorRefs and Connections. First, two types of node are available in a graph: Beliefs and Intentional Elements. This metamodel supports multiple references of intentional elements through the class IntentionalElementRef. It contains criticality and priority attributes, which have high, medium, low or none assigned. Those attributes are defined in the references because they depend on the diagram context. Then, IntentionalElement is the definition class, which has a type attribute (softgoal, goal, task or resource). In addition, the type of decomposition (AND or OR) for all the references is defined as an attribute of IntentionalElement.

[image: image1.emf]Belief

author : String

IntentionalElementRef

criticality : Criticality = None

priority : Priority = None

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = And

0..*

1

-refs

0..*

-def

1

ElementLink

LinkRef

1

0..*

-link

1

-refs

0..*

BeliefLink

ActorGRLGraph

ActorRef

0..1

0..*

-parent

0..1

-children

0..*

1

0..*

-contDef

1

-contRefs

0..*

0..*

1

-contRefs

0..*-diagram

1

Connection

0..*

1

-connections

0..*

-diagram

1

GRLNode

0..*

1

-nodes

0..*

-diagram

1

0..1

0..*

-contRef

0..1

-nodes

0..*

1

0..*

-source

1

-succ

0..*

0..*

1

-pred

0..*

-target

1

Priority

High

Medium

Low

None

<<enumeration>>

IntentionalElementType

Softgoal

Goal

Task

Ressource

<<enumeration>>

DecompositionType

And

Or

<<enumeration>>

Criticality

High

Medium

Low

None

<<enumeration>>

Figure 1. Main Elements of the Abstract URN/GRL Metamodel

The second node type is Beliefs, which are used to create rationales supporting the decision made in the diagram. Those rationales are made by authors, typically stakeholders represented as actors. An author attribute is available to trace who made the beliefs. Beliefs are defined as elements local to a diagram because they are context dependant, i.e., they are used to explain and document the diagram.

Actors are also defined with references (local to diagrams) and definitions (global to the model). GRLGraph are composed of ActorRefs, which can contain bound elements (other ActorRefs or GRLNodes).

Finally, Connections are the links available in diagrams. BeliefLinks associate Beliefs to other nodes, and LinkRefs are associations between intentional elements. Because intentional element definitions are global, links have a global definition class, ElementLink.
[image: image2.emf]Decomposition

Contribution

contribution : ContributionType = Unknown

correlation : boolean = false

Dependency

ElementLink

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = And

0..*

1

-linksSrc

0..*

-src

1

1

0..*

-dest

1

-linksDest

0..*

ContributionType

Make

Help

SomePositive

Unknown

SomeNegative

Hurt

Break

<<enumeration>>

Figure 2. GRL Links Metamodel

Figure 2 shows the ElementLinks supported by the metamodel, whose instances of Decomposition, Contribution or Dependency. Each link has a source and a destination intentional element. The destination element is the intentional element that has its evaluation level affected by the link. A Correlation is modeled as an attribute of Contribution (false by default). Contribution/correlation types (Make, Help, Some Positive, Unknown, Some Negative, Hurt or Break) are defined in an enumeration (ContributionType).

Dependencies are also links between pairs of intentional elements. To create a typical three-element GRL dependency relationship, two links have to be instantiated: a dependency from the dependee (source) to the dependum (destination) and a second dependency from the dependum (source) to the (depender).

The implementation focuses on integrating the SR and SD models. However, the metamodel does not support directly dependencies between actors. Instead, such dependencies are supported by binding intentional elements to actor references, and by using these two elements in the dependencies.
[image: image3.emf]RespRef

repetitionCount : int

Responsibility

1..*

1

-respRefs

1..*

-respDef

1

StartPoint

EndPoint

Stub

dynamic : boolean = false

shared : boolean = false

TimerInBinding

1

0..*

-startPoint

1

-inBindings

0..*

OutBinding

1

0..*

-endPoint

1

-outBindings

0..*

PluginBinding

repetitionCount : int

probability : double = 1.0

0..*

0..1

-bindings

0..*

-stub

0..1

1..*

1

-in

1..*

-binding

1

1..*

1

-out

1..*

-binding

1

NodeConnection

probability : double = 1.0

0..1

0..1

-timer

0..1

-timeoutPath

0..1

1

0..*

-stubEntry

1

-inBindings

0..*

1

0..*

-stubExit

1

-outBindings

0..*

ComponentElement

PathNode

0..*

1

-succ0..*

-source

1

1

0..*

-target

1

-pred

0..*

UCMmap

1

0..*

-plugin

1

-parentStub

0..*

1

0..*

-diagram

1

-nodes

0..*

1

0..*

-diagram

1

-connections

0..*

ComponentRef

role : String

replicationFactor : int = 1

0..*

1

-contRefs

0..*

-contDef

1

0..*

0..*

-nodes

0..*

-contRefs

0..*

1

0..*

-diagram

1

-contRefs

0..*

0..*

0..1

-children

0..*

-parent

0..1

URNmodelElement

(from URNcore)

Figure 3. Main Elements of the Abstract URN/UCM Metamodel

The abstract UCM metamodel (Figure 3) defines abstract concepts available in UCMmaps. These maps contain component references, path nodes, and node connections. The UCM syntax supports sub-maps via the stub/plug-in binding mechanism. Others typical nodes in maps (subclasses of PathNode, see Figure 4) include start/end points, responsibility references, AND/OR forks/joins, and timers.
[image: image4.emf]Abort

Connect

OrJoin

Loop

RespRef

repetitionCount : int

AndJoin

Timestamp

StartPoint

WaitingPlace

waitType : String

EndPoint

Stub

dynamic : boolean = false

shared : boolean = false

OrFork

AndFork

UCMmodelElement

id : String

name : String

FailurePoint

Timer

PathNode

Map

PathGraph

1

0..*

1

pathNodes

0..*

1

0..1

1

pathGraph

0..1

Figure 4. URN/UCM PathNode Elements
The metamodel also includes classes and associations describing conditions (Figure 5), component and responsibility definitions (Figure 6), performance annotations (Figure 7), GRL strategies (section 1.2) and UCM scenario definitions (section 1.3).
[image: image5.emf]PluginBinding

id : String

repetitionCount : int

probability : double = 1.0

NodeConnection

probability : double = 1.0

Timer

EndPointStartPoint

Condition

expression : String

0..1

1

precondition

0..1

1

0..1

1

condition

0..1

1

1

1

timeoutCondition

1

1

0..1

1

postcondition

0..1

1

0..1

1

precondition

0..1

1

Loop

1

1

exitCondition

1

1

Figure 5. URN/UCM Conditions
[image: image6.emf]ComponentKind

Team

Object

Process

Agent

Actor

Other

<<enumeration>>

ComponentComponentType

0..*

0..1

subType

0..*

superType

0..1

0..1

0..*

type

0..1

instances

0..*

Pool

ofComponents : boolean = false

content : String

0..1

0..*

componentType

0..1

pools

0..*

DynamicResponsibility

kind : DynamicRespKind

toPath : boolean

arrowLength : int

0..1

0..*

pool

0..1

dynResponsibilities

0..*

DynamicRespKind

Move

MoveStay

Create

Copy

Destroy

<<enumeration>>

UCMmodelElement

id : String

name : String

ComponentRegular

kind : ComponentKind

protected : boolean = false

slot : boolean = false

Responsibility

ComponentElement

0..*

0..1

includedComponent

0..*

includingComponent

0..1

GRLmodelElement

id : String

name : String

URNdefinition

0..*

1

responsibilities

0..*

1

0..*

1

components

0..*

1

0..*

1

grlElements

0..*

1

Figure 6. URN/UCM Component and Responsibility Definitions
[image: image7.emf]DeviceKind

Processor

Disk

DSP

Other

<<enumeration>>

PerfValueKind

Mean

Variance

Percentile

Moment

Min

Max

Distribution

Unknown

<<enumeration>>

PerfValueSource

Required

Assumed

Predicted

Measured

Unknown

<<enumeration>>

ArrivalProcess

PoissonPDF

Periodic

Uniform

PhaseType

<<enumeration>>

PerfAttribute

Delay

Throughput

Utilization

Interval

Wait

<<enumeration>>

OpenWorkload

ClosedWorkload

population : int

ActiveResource

opTime : double = 0.0

ExternalOperation

description : String

PassiveResource

ComponentElement

0..1

0..1

resource0..1

component

0..1

ProcessingResource

kind : DeviceKind

ComponentRegular

kind : ComponentKind

protected : boolean = false

slot : boolean = false

0..1

0..*

includingComponent

0..1includedComponent

0..*

0..1

0..*

host

0..1

components

0..*

UCMmodelElement

id : String

name : String

PathNode

StartPoint

Responsibility

PerfValue

value : String

kind : PerfValueKind = Unknown

source : PerfValueSource = Unknown

percentile : String

kthMoment : String

Workload

arrivalPattern : ArrivalProcess

arrivalParam1 : double

arrivalParam2 : double

externalDelay : double

value : double

coeffVarSeq : double

0..1

1

workload

0..1

1

Demand

quantity : double

0..*

1

demands0..*

1

PerfMeasure

measure : PerfAttribute = Delay

0..*

1

perfValues

0..*

1

0..1

0..*

duration

0..1

respTime

0..*

GeneralResource

10..*

resource

1

demands

0..*

UCMspec

0..*

1

perfMeasures

0..*

1

0..*

1

resources

0..*

1

ResponseTimeReq

responseTime : String

percentage : String

1

0..*

1

resptimereq

0..*

Timestamp

0..*

1

sources

0..*

ts2

1

0..*

1

targets

0..*

ts1

1

Figure 7. URN/UCM Performance Elements
1.1.2 Implementation Metamodel

From the abstract metamodel, an implementation metamodel was developed, which is used in jUCMNav. The transformation of an abstract syntax metamodel to an implementation metamodel is accomplished in two steps: refactoring the metamodel with common concepts for both sub-notation and adding visual elements to the syntax.

First, packages for both URN sub-notations (UCM and GRL) are created (Figure 4). In addition, the URNcore package is added to define common classes for the complete URN model. It defines such as a generic URNmodelElement, a super-class of sub-notations generic classes (GRLmodelElement and UCMmodelElement). This class contains three attributes shared by all URN conceptual classes: id, name and description.

[image: image8.jpg]
Figure 8. Main Packages in URN Metamodels

Also, amongst the most important elements in the URNcore package are the interfaces that define the common traits between both URN sub-languages. It includes diagrams, nodes, connections, containers, and container references (Figure 5). Diagrams are compositions of nodes, connections and container references. ContainerRef are elements with boundaries that support other bound elements. Using common interfaces allow developing simplified and standardized editors for both URN notations.

Then, the second step to implement the implementation metamodel consists of adding visual attributes and classes for the implementation of the implementation notation. Visual attributes are located in common interfaces defined in the URNcore package. Those attributes correspond to position (x, y), size (width, size) and color (line, fill). Nodes and containers also support labels, defined in NodeLabel and ComponentLabel. They are sub-classes of the Labels class, which have deltaX and deltaY attributes, for defining the position in diagrams.

[image: image9.emf]IURNContainer

lineColor : String

fillColor : String

filled : boolean = false

<<Interface>>

ComponentLabel

NodeLabel

IURNContainerRef

x : int

y : int

width : int

height : int

fixed : boolean = false

<<Interface>>

0..*

1

-contRefs

0..*

-contDef

1

0..1

1

-contRef

0..1

-label

1

IURNNode

x : int

y : int

<<Interface>>

1

0..1

-node

1

-label

0..1

0..*

0..1

-nodes

0..*

-contRef

0..1

IURNDiagram

<<Interface>>

1

0..*

-diagram

1

-nodes

0..*

1

0..*

-diagram

1

-contRefs

0..*

IURNConnection

<<Interface>>

1

0..*

-source

1

-succ

0..*

0..*

1

-pred

0..*

-target

1

1

0..*

-diagram

1

-connections

0..*

Figure 9. Common Interface for URN from URNcore Package

Visual elements also included link routing elements. Those elements are specific to both sub-notations and are defined in their implementation packages. In the GRL package, a LinkRefBendpoint class has been added to support link routing. LinkRefBendpoints define points relative to the visual figure by which the link should be routed. Multiple bendpoints are supported, and the relative location is implemented with the x and y attributes.

Figure 6 shows how GRL conceptual classes implement the URN abstract interfaces. For instance, Actor implements IURNContainer and ActorRef implements IURNContainer. Note that all the classes, attributes, and associations from the abstract metamodel are preserved in this implementation metamodel. In addition, this package included analysis attributes and classes which will be discussed in the standard.

[image: image10.emf]Contribution

- contribution : ContributionType = Unknown

- correlation : boolean = false

Actor

ActorRef

IURNContainer

- lineColor : String

- fillColor : String

- filled : boolean = false

(from URNcore)

<<Interface>>

IURNNode

- x : int

- y : int

(from URNcore)

<<Interface>>

IURNContainerRef

- x : int

- y : int

- width : int

- height : int

- fixed : boolean = false

(from URNcore)

<<Interface>>

1

0..*

-contDef

1

-contRefs

0..*

0..1

0..*

-parent

0..1

-children

0..*

0..1

0..*

-contRef

0..1

-nodes

0..*

IURNConnection

(from URNcore)

<<Interface>>

1

0..*

-source

1

-succ

0..*

0..*

1

-pred

0..*

-target

1

IURNDiagram

(from URNcore)

<<Interface>>

0..*

1

-nodes

0..*

-diagram

1

0..*

1

-contRefs

0..*

-diagram

1

0..*

1

-connections

0..*

-diagram

1

GRLNode

Belief

- author : String

IntentionalElementRef

- criticality : Criticality = None

- priority : Priority = None

IntentionalElement

- type : IntentionalElementType

- decompositionType : DecompositionType = And

- lineColor : String

- fillColor : String

- filled : boolean = false

0..*

1

-refs0..*

-def

1

ElementLink

LinkRef

1

0..*

-link

1

-refs

0..*

LinkRefBendpoint

- x : int

- y : int

1

0..*

-linkref

1

-bendpoints

0..*

GRLGraph

BeliefLink

DependencyDecomposition

Priority

- High

- Medium

- Low

- None

<<enumeration>>

DecompositionType

- And

- Or

<<enumeration>>

Criticality

- High

- Medium

- Low

- None

<<enumeration>>

ContributionType

- Make

- Help

- SomePositive

- Unknown

- SomeNegative

- Hurt

- Break

<<enumeration>>

IntentionalElementTy

pe

- Softgoal

- Goal

- Task

- Ressource

<<enumeration>>

Figure 10. Main Elements of the Implementation GRL Metamodel

The UCM implementation package, shown in Figure 7, contains basic UCMmap elements, scenario definitions, and performance attributes associated with UCM models. A new sub-class of the PathNode class, EmptyPoint, is added to support link routing. Integration with the URN common interfaces is realized in a way similar to what was done for GRL. For instance, GRL nodes and UCM path nodes implement the IURNNode interface as both have a location and can be moved, connected together, and bound to a IURNContainerRef (i.e., an ActorRef in GRL and a ComponentRef in UCM). Most of the operations performed on the nodes, links, and components hence become common to GRL and UCM models.

[image: image11]
Figure 11. Main Elements of the Implementation UCM Metamodel

To complete the integration of the two notations, the top-level package URN (Figure 8) has been added. It includes classes defining global elements in a URNmodel (URNdefinition), as well as GRL and UCM diagram specifications (GRLspec and UCMspec). In addition, the URNlink defined in this package allows one to define links between any URN elements. Those links are discussed in detail in Chapter 4.

Finally, the two metamodels were developed to support extensions to URN and to jUCMNav. Developing new elements will only require extending the common URN interfaces. Also, adding new views to URN models (e.g., UML class diagrams) will simply require creating a new package for the view, a specification class (such as GRLspec and UCMspec) and a sub-class of URNmodelElement. Then, after modelling the new classes that implement URN interfaces and importing the metamodel in jUCMNav, little programming will be needed to have a new editor supporting basic functionalities.

[image: image12.emf]UCMspec

(from UCM)

GRLspec

(from GRL)

URNdefinition

(from URNcore)

URNspec

- name : String

- description : String

- author : String

- created : String

- modified : String

- specVersion : String

- urnVersion : String

- nextGlobalID : String

0..1

1

-ucmspec

0..1

-urnspec

1

0..1

1

-grlspec

0..1

-urnspec

1

1

1

-urndef

1

-urnspec

1

URNmodelElement

- id : String

- name : String

- description : String

(from URNcore)

URNlink

0..*

1

-urnLinks

0..*

-urnspec

1

0..*

1

-fromLinks

0..*

-fromElem

11

0..*

-toElem

1

-toLinks

0..*

Figure 12. Element of the URN Implementation Package

1.2 GRL Strategies

The evaluations assigned to intentional elements are based on many aspects, such as design decisions, stakeholders, organizational priorities, user beliefs and many other variables. The concept of GRL strategies is developed to compare the overall results of those variables on the models. It provides two different analysis labels on the model: one for intentional elements and one for actors.
GRL strategies are defined as user-defined sets of initial evaluations. As shown in the strategies metamodel (Figure 9), the strategies (EvaluationStrategy) can be grouped using StrategiesGroup. Groups and strategies are also sub-classes of URNmodelElement, and inherit its attributes (id, name and description) in the implementation metamodel. Each strategy also has an author attribute, which is used for traceability to the originating stakeholder. Like beliefs, strategies are hypotheses and decisions based on a given context.
[image: image13.emf]URNmodelElement

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = And

Evaluation

evaluation : int = 0

1

0..*

-intElements

1

-evals

0..*

StrategiesGroup

GRLspec

0..*

1

-intElements

0..*

-grlspec

1

1

0..*

-grlspec

1

-groups

0..*

EvaluationStrategy

author : String

0..*

1

-evaluations

0..*

-strategies

1

0..*

1

-strategies

0..*

-group

1

1

0..*

-grlspec

1

-strategies

0..*

Figure 13. Abstract GRL Strategies Metamodel

1.3 UCM Scenarios

1.3.1 Metamodel Overview
Figure 10 presents the ucm.scenario package from the URN meta-model used in jUCMNav. The additions required to support scenarios (all located in the ucm.scenario package) made between version v2.0 and v3.0 are indicated. Reading this class diagram, one discovers that the root UCMspec can contain multiple groups which in turn can contain multiple scenarios. A model can also contain a series of variables which can be Booleans, integers or enumerations. Scenarios contain start points that define where to start the traversal and variable initializations that indicate the initial context. There are additional features that are closely related to scenario verification such as scenario pre/post conditions and scenario end points, which define the end points that could/should have been reached at the end of the traversal. Scenarios can include other scenarios and effectively inherit their elements; this helps scenario re-use in UCM models.

[image: image14.png]
Figure 14. UCM Scenario Metamodel
The concept of inclusion requires a few clarifications. When a scenario includes another, variable initializations are migrated and can be overwritten in the including scenario. Scenario start points and preconditions of the included scenarios are executed and verified first in the execution; their order is imposed by their definition in the included scenario. As for scenario end points and postconditions, they are also verified before the including scenario’s addition, although they could be evaluated after; given their nature, the order of verification is not important because all elements will be verified against the same final context.

Not presented in Figure 10 but as equally important are conditions and responsibility definitions. Conditions can indeed be used to define scenario pre/post conditions, but they are also associated with the node connections exiting an or-fork and the selection policy of a dynamic stub’s possible plug-in maps. Furthermore, start points have preconditions and end points have postconditions. As for responsibility definitions, they have code that is executed when the traversal engine passes through them. The grammar for conditions and responsibilities is compatible both with Java and SDL and is defined in the next section.

1.3.2 Grammar, Parser and Type-Checker

This section describes the data model used in URN. URN supports Boolean variables, integer variables, and variables of user-defined enumeration types. All variables are global in scope. There are a variety of supported operators in our syntax:

Booleans
· Compare (equals, not equals)

· Binary operations (and, or, xor, implies)

· Unary operations (not)

· Assignment

Integers
· Compare (equals, not equals, greater than, less than, greater or equal to, less or equal to)

· Binary operations (addition, subtraction, multiplication)

· Division is not supported.

· Unary operations (additive complement (-VarName))

· Pre/post-increment/decrement are not supported.
· Assignment

User-defined Enumerations
· Compare (equals, not equals)

· Assignment

As for the concrete notation itself for each of these operators, diverging goals led to an interesting compromise. As jUCMNav is developed in Java and because most of the students using jUCMNav know Java, there was a driving force pushing for a Java-like syntax. However, because URN is undergoing standardization by the ITU-T, an SDL-compatible notation was also desirable. The implemented compromise allows the use of operators from both notations interchangeably. (Currently, one can even mix and match, although that is not recommended for readability reasons). The only conflicting operator is the lone equals sign (“=”) which represents assignment in Java and comparison in SDL. Luckily, the context in which the syntax is used (responsibility or condition) only allows for one interpretation.

Expression := Implication

Implication := Disjunction (Implies Disjunction)*

Disjunction := Conjunction ((Or | Xor) Conjunction)*

Conjunction := Comparison (And Comparison)*

Comparison := BooleanUnit ((Equals| NotEquals) BooleanUnit)*

Negation := Not BooleanUnit

BooleanUnit := Negation | RelationalExpression | BooleanConstant

RelationalExpression := AdditiveExpression ((GreaterThan | GreaterOrEqualTo |

LowerThan | LowerOrEqualTo) AdditiveExpression)?

AdditiveExpression := MultiplicativeExpression ((Addition | Substraction)

MultiplicativeExpression)*

MultiplicativeExpression:= UnaryExpression (Multiplication UnaryExpression)*

UnaryExpression := (Addition | Substraction)? ("(" Expression ")" |

IntegerConstant | Identifier)

And := "and" | "&&"

Or := "or" | "||"

Xor := "xor" | "^"

Implies := "=>"

Equals := "=" | "=="

NotEquals := "not" | "!"

GreaterThan := ">"

GreaterOrEqualTo := ">="

LowerThan := "<"

LowerOrEqualTo := "<="

Addition := "+"

Substraction := "-"

Multiplication := "*"

IntegerConstant := ["0"-"9"]+

BooleanConstant := "true" | "false"

Identifier := ["_","a"-"z","A"-"Z"](["_","a"-"z","A"-"Z", "0"-"9"])*

Figure 15. BNF Grammar for Conditions

Figure 11 represents grammar used for the conditions in jUCMNav. The grammar supports Boolean logic and basic arithmetic, as long as the evaluation of a condition produces a Boolean value. Figure 12 presents the augmented grammar that represents the pseudo-code used in responsibility definitions.
ResponsibilityAction := Statement+

Statement := Assignment | CompoundStatement | IfStatement

Assignment := Identifier AssignmentOperator Expression StatementTerminator

CompoundStatement := "{" Statement* "}"

IfStatement := If Expression Statement (Else Statement)?

AssignmentOperator := "=" | ":="

If := "if"

Else := "else"

StatementTerminator := ";"

Figure 16. BNF Grammar for Responsibilities
The grammars should speak for themselves, but additional comments with regards to types are required. A simple type-checking engine is proposed to verify that the types are properly used (Figure 13); types cannot be mixed in jUCMNav. There is no convention that a non-zero integer is equivalent to “true” and there is no numerical equivalent for an enumeration value.

(Boolean) Implies (Boolean) : (Boolean)

(Boolean) Or (Boolean) : (Boolean)

(Boolean) Xor (Boolean) : (Boolean)

(Boolean) And (Boolean) : (Boolean)

(Boolean) Equals (Boolean) : (Boolean)

(Boolean) NotEquals (Boolean) : (Boolean)

(Integer) Equals (Integer) : (Boolean)

(Integer) NotEquals (Integer) : (Boolean)

(EnumerationName) Equals (EnumerationName) : (Boolean)

(EnumerationName) NotEquals (EnumerationName) : (Boolean)

Not (Boolean) : (Boolean)

(Integer) GreaterThan (Integer) : (Boolean)

(Integer) GreaterOrEqualTo (Integer) : (Boolean)

(Integer) LowerThan (Integer) : (Boolean)

(Integer) LowerOrEqualTo (Integer) : (Boolean)

(Integer) Addition (Integer) : (Integer)

(Integer) Substraction (Integer) : (Integer)

(Integer) Multiplication (Integer) : (Integer)

((Boolean)) : (Boolean)

((Integer)) : (Integer)

((EnumerationName)) : (EnumerationName)

Substraction (Integer) : (Integer)

Addition (Integer) : (Integer)

If (Boolean) (void) : (void)

If (Boolean) (void) Else (void) : (void)

(Boolean) AssignmentOperator (Boolean) : (void)

(Integer) AssignmentOperator (Integer) : (void)

(EnumerationName) AssignmentOperator (EnumerationName) : (void)

{ (void) } : (void)

Figure 17. Type-Checker Rules
[image: image15.emf]RespRef

- repetitionCount : int

Responsibility

empty : boolean = false

(from URNcore)

1..*

1

-respRefs

1..*

-respDef

1

UCMmodelElement

(from URNcore)

ComponentElement

(from URNcore)

Timer

StartPoint

EndPoint

NodeConnection

- probability : double = 1.0

0..1

0..1

-timer

0..1

-timeoutPath

0..1

Stub

- dynamic : boolean = false

- shared : boolean = false

InBinding

1

0..*

-startPoint

1

-inBindings

0..*

1

0..*

-stubEntry

1

-inBindings

0..*

OutBinding

1

0..*

-endPoint

1

-outBindings

0..*

1

0..*

-stubExit

1

-outBindings

0..*

UCMmap

PluginBinding

- id : String

- repetitionCount : int

- probability : double = 1.0

0..*

0..1

-bindings

0..*

-stub

0..1

1..*

1

-in

1..*

-binding

1

1..*

1

-out

1..*

-binding

1

1

0..*

-plugin

1

-parentStub0..*

PathNode

ComponentRef

- role : String

- replicationFactor : int = 1

- anchored : boolean = false

IURNContainer

- lineColor : String

- fillColor : String

- filled : boolean = false

(from URNcore)

<<Interface>>

IURNNode

- x : int

- y : int

(from URNcore)

<<Interface>>

IURNContainerRef

- x : int

- y : int

- width : int

- height : int

- fixed : boolean = false

(from URNcore)

<<Interface>>

0..1

0..*

-parent

0..1

-children

0..*

10..*

-contDef

1

#contRefs

0..*

0..1

0..*

-contRef

0..1

#nodes

0..*

IURNConnection

(from URNcore)

<<Interface>>

1

0..*

-source

1

#succ

0..*

0..*

1

#pred

0..*

-target

1

IURNDiagram

(from URNcore)

<<Interface>>

0..*

1

-nodes

0..*

-diagram

1

0..*

1

-contRefs

0..*

-diagram

1

0..*

1

-connections

0..*

-diagram

1

