Feature Description and Feature Interaction Analysis with Use Case Maps and LOTOS

Daniel Amyot et al.
SITE, University of Ottawa, Canada
damyot@site.uottawa.ca
FIW’00, Glasgow, May 19, 2000

SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING
UNIVERSITY OF OTTAWA
Collaborators

- Leïla Charfi, University of Ottawa
- Nicolas Gorse, University of Ottawa
- Tom Gray, Mitel Corporation
- Luigi Logrippo, University of Ottawa
- Jacques Sincennes, University of Ottawa
- Bernard Stépien, University of Ottawa
- Tom Ware, Mitel Corporation
Introduction

- New methodology for feature design, specification and validation
- Jointly by U. of Ottawa and Mitel Corp.
- Application to new product
 - Enterprise private networks
 - Agent-based call model
 - Features: Outgoing Call Screening, Call Forward Always, Call Forward Busy, Call Hold, Recall, Call Pickup, Call Transfer
Approach

- **Use Case Maps**
 - Causal scenario notation
 - Description and documentation of requirements and high-level designs

- **LOTOS**
 - Formal algebraic specification language
 - Powerful validation & verification tools and techniques, enabling FI detection

- Both have an FI history, in isolation
Related Work

- **Formal Methods**
 - Precise, mathematical, but low penetration

- **Scenario-Driven Approaches**
 - Higher level of acceptance, accessible to a broad range of readers; but integration of scenarios and V&V remains difficult

- **Some Well-Known Approaches**
 - SDL and Message Sequence Charts
 - Unified Modeling Language
Two Complementary Techniques

- **Use Case Maps**
 - Visual and intuitive scenario notation
 - Capture, integrate, and help reasoning about functional requirements
 - FI avoidance

- **LOTOS**
 - Formalization, abstract prototyping and validation
 - Automated FI detection
In This Presentation...

- Use Case Maps Notation
- System Architecture with Call Model UCMs
- UCM-Based FI Avoidance
- From UCMs to LOTOS
- Validation and FI Detection with LOTOS
- Traces, MSCs and Animations
- Conclusions
Use Case Maps Notation

Visualization of causal relationships between responsibilities allocated to abstract components

Start Point Responsibility Condition End Point

Alice AgentA AgentB Bob

req msg msg mb

Condition:
[vrfy] [idle] [upd] [busy]

Component
Refining UCMs with Message Exchanges

SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING
UNIVERSITY OF OTTAWA
Integrating UCM Scenarios

Originating plug-in

Terminating plug-in

OCS plug-in

Plug-ins for StubO

Plug-ins for StubT

Root Map

SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

UNIVERSITY OF OTTAWA
System Architecture

- Agents types:
 - Device Agents (DAGENT or DEB)
 - Personal Agents (PAGENT or CEB)
 - Functional Agents (FAGENT or LEB)

- Agents roles:
 - Originating, Terminating, 3rd party

- Call objects instantiated dynamically
Design of the Call Model UCMs

- Created by industrial partners
 - 1 senior designer and 2 junior designers

- More than 100 UCMs
 - Basic call and 10 features
 - Structured with 60 stubs
 - 7 levels deep
 - Many plug-ins reused
 - Recently added 3 features, low impact
 - Use of the *UCM Navigator*
This UCM connects to the SimplifiedBasicCall. The terminating party can only go off-hook when its device is...
FI Avoidance at UCM Level

- Many FI solved at integration time
- Before the generation of a prototype
- Remaining FI mostly in dynamic stubs
- Several problems detected by inspection
 - Non-determinism in selection policies
 - Erroneous UCMs
 - Ambiguous UCMs, lack of comments
- New techniques (e.g. Namakura et al.)
Towards LOTOS

- ISO standard, process algebra
- Powerful constructs
 - Composition: multiway rendezvous
 - Hiding
 - Abstract Data Types (ADT)
 - Flexible inter-process synchronization
- Constructs similar to those of UCMs
From UCMs to LOTOS

<table>
<thead>
<tr>
<th>Start/end points</th>
<th>Visible gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibilities</td>
<td>Hidden gates</td>
</tr>
<tr>
<td>Agents/components</td>
<td>Processes</td>
</tr>
<tr>
<td>Stubs</td>
<td>Processes</td>
</tr>
<tr>
<td>Plug-ins</td>
<td>Processes</td>
</tr>
<tr>
<td>Inter-path causality</td>
<td>Hidden inter-process synchronization (msg)</td>
</tr>
<tr>
<td>Databases, conditions</td>
<td>Abstract Data Types</td>
</tr>
</tbody>
</table>
Validation

- Scenarios derived from UCMs paths for:
 - Basic System Properties
 - Individual Features Properties
 - Feature Interaction
- Scenarios simpler than specification
 - Few features considered at once
 - No component, close to requirements
- Verdicts obtained with LOLA
FI Analysis Phase

- FI team: 2 students
- No major fault, but several problems detected
- LOTOS specification: 2450 lines
- 36 test scenarios: 1300 lines
- Currently being extended in new phase
- Other LOTOS-based techniques and tools to be used
Feature Interaction “Suspiscion”

- Derivation of properties of individual features
- Analysis in Prolog to determine:
 - direct and transitive FI
 - non-determinisim
 - loops
- Generation of FI prone scenarios and configurations
Traces, MSCs and Animations

- LOTOS traces are translated to MSCs by associating direction to gates and identifying sender and receiver entities.
- Translation of MSCs to LOTOS permits validation against external scenarios.
- A graphical animator displays a given trace as a structural diagram of the system, in a step-by-step fashion.
Conclusions

- UCM-LOTOS approach for specification and validation of telecommunications systems seems feasible and effective
- Encouraging results so far, more to come in the near future...
- Technology transfer in progress