Semantic-Based Aspect Interaction Detection with Goal Models

Gunter Mussbacher¹, Daniel Amyot¹, Jon Whittle²

¹SITE, University of Ottawa, Canada
²Dept. of Computing, Lancaster University, UK

June 12, 2009
Background: Aspect-oriented Modeling

- Aspects address the problem of one concern crosscutting other concerns in a system or model.
- Aspects can encapsulate concerns even if they are crosscutting.

Without Aspects

Concern A Concern B Concern C

- Tangling
- Scattering

With Aspects

Concern A Concern B Concern C

- Aspect 1
- Aspect 2
- Aspect 3

(each aspect contains a composition rule illustrated by the arrows that defines where to add the aspect)

… 3 Crosscutting Concerns (Aspect 1, Aspect 2, Aspect 3)
Motivation

• Aspect Interaction Problem is closely related to the Feature Interaction Problem
 • Multiple aspects may be applicable at a given point in the base model

• Syntactic Interactions can be detected by comparing syntax
 • In the best case, aspects may simply be ordered
 (e.g., an aspect may assume certain modeling elements in the base are introduced by another aspect)

• Semantic Interactions require a context-based interpretation of the meaning of models
 • In the worst case, there may be deep semantic conflicts
 (e.g., inherent trade-offs between two non-functional aspects such as security and performance)
 • Security mechanisms must be enforced \rightarrow performance impact
 • Performance aspect may cache results \rightarrow security implications
Motivation (2)

• Our approach to address semantic interactions
 • Lightweight semantic annotations of aspect models
 • Model the semantic impact of aspects on each other in a goal model called an influence model

• Identify and trade-off semantic aspect interactions with influence model
• Reason about stakeholder needs and aspect interactions with the help of qualitative or quantitative evaluation mechanisms
• Novel research direction
Table of Contents

• Overview of our Approach

• Example: Electronic Voting Machine
 • Reporting Use Case (Base Model)
 • Aspects
 • Composed Model

• Goal-oriented Requirement Language (GRL)

• Goal Model for Electronic Voting Machine

• Conclusion and Future Work
Overview

MATA / AoUCM

Composition

MATA / AoUCM

GRL Goal Model

Evaluation

Strategies

Semantic Markers

Values for initial satisfaction levels

AoUCM … Aspect-oriented Use Case Maps
GRL … Goal-oriented Requirement Language
MATA … Modeling Aspects Using a Transformation Approach
Electronic Voting Machine: Reporting Use Case

Poll Official
- report
- selectReport
- reported

Voting Machine
- presentOptions

Backend Server
- saveResults

Introduction Overview Base Model Aspects Composed Model GRL Goal Model Evaluation Conclusion/Future Work

Semantic-Based Aspect Interaction Detection with Goal Models. ICFT'09. © 2009 Gunter Mussbacher, Daniel Amyot, Jon Whittle
Electronic Voting Machine: Authentication Aspect

Aspectual Properties (Behavior & Structure)

Poll Official
- authenticate
- enterCredentials

Voting Machine
- authenticate
- fail
- requires Authentication
- [success]
- end

Pattern for Composition Rule
Electronic Voting Machine: Remote Service Aspect

<<local>> Authentication Server

access Remote [true]

accessed Remote [false]

requires RemoteAccess P

<<remote>> Authentication Server

authenticate

Voting Machine

Authentication Server

authenticate
Electronic Voting Machine: Composed Model

Poll Official
- enter Credentials
- report
- selectReport
- reported

Voting Machine
- fail
- [success]
- presentOptions
- saveResults
- authenticate

Backend Server
- saveResults

Authentication Server
- <<confidential>>
- <<local>>
- Authentication Server

Reporting Use Case:
- Reporting Use Case
- Authentication
- Remote Service
Goal-oriented Requirement Language (GRL)

• GRL is integrated with Use Case Maps (UCM) in the User Requirements Notation (URN)
 • URN is the first and currently only standard which explicitly addresses goals in addition to scenarios in a graphical way in one unified language (International Telecommunication Union, ITU-T Z.150 series)

• GRL is based on i* (concepts / syntax) and the NFR Framework (evaluation mechanism)
 • Ideally suited to capture qualitative relationships (as required by the influence model)
 • Reason about stakeholder needs and aspect interactions with the help of qualitative or quantitative evaluation mechanisms
Electronic Voting Machine: Goal Model

Goal (intermediate node for combining semantic markers)

Softgoal (for NFR addressed by aspect)

Contribution (for impact of semantic marker on its own aspect’s NFR)

Task (for semantic markers)

Decomposition

Correlation (for impact of semantic marker on another aspect’s NFR)

GRL Contribution Types:
-
-
-
-
-

- Make
- Some Positive
- Help
- Hurt
- Some Negative
- Break
Electronic Voting Machine: Evaluated Goal Model

Initial Satisfaction Level (100 for semantic marker in use; indicated by *)
- Remote Service: 100
- Local Server: 100
- Consistency: 75

Propagated Satisfaction Level (for each aspect’s NFR)
- Confidentiality: 0
- Authentication: 100
- Caching: 0
- Encryption: 0
- Performance: 25

Initial Satisfaction Level (0 for semantic marker not in use; default value)
- Remote Service: 0
- Local Server: 0

GRL Satisfaction Levels:
- Denied
- Weakly Denied
- None
- Weakly Satisfied
- Satisfied
Electronic Voting Machine: Evaluated Goal Model 2

GRL Satisfaction Levels:
- Denied
- Weakly Denied
- None
- Weakly Satisfied
- Satisfied
Conclusion and Future Work

• Presented the first steps towards an approach for semantically detecting interactions between aspect models based on lightweight semantic annotations

• Tool support
 • MATA tool for UML sequence diagrams
 • jUCMNav for AoUCM and GRL
 • not automated at this point: GRL propagation algorithms do not take semantic markers into account → initial satisfaction levels have to be assigned manually

• Empirical studies are needed to compare the benefits versus the additional effort required (one industrial case study exists)

• Use existing, domain-specific, standardized profiles for lightweight semantic annotations