
Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 1

Use Case Maps: A New Paradigm for
Attributing Behaviour to System

Architecture
R.J.A. Buhr

Department of Systems and Computer Engineering
 Carleton University, Ottawa, Canada

buhr@sce.carleton.ca
http://www.sce.carleton.ca/faculty/buhr

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 2

Key Points

• The ability to attribute behaviour to architecture is important for
high-level understanding, designing, evolving, and
reengineering all sorts of systems (from object-oriented programs
to parallel and distributed computer systems).

• Scenarios are a good way of doing it, but popular scenario
techniques, such as message sequence charts, that work well for
small-scale systems do not scale up well.

• Use case maps provide a new, scenario-based way of attributing
behaviour to architecture that solves the scaleup problem by the
simple trick of representing scenarios in terms of cause-effect
sequences of responsibilities along paths, instead of interaction
sequences between components.

• The notation enables compact, composite maps to be drawn to
represent behaviour patterns of whole systems in path terms.

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 3

This talk:

• Describes highlights of the approach, its relationship to other
approaches, work in progress, and issues and directions for future
work;

• Through examples, aims to convincesoftware and system
engineers that the approach has depth and adds value, despite (and
because of) its simplicity and deferment of detail.

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 4

Complexity Factors in Systems

Definition: A system is a set of collaborating
components, each of which may, through recursive

decomposition, be a system.

Component
context diagram:
• identifies and

positions
components

• an aspect of
architecture.

Setting the stage:

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 5

First Factor: Operation.

• Operational connective tissue:
wiring.

• Wiring required both between
peer components at the same
level of recursive
decomposition and between
components at different levels
of recursive decomposition,
through all levels of
decomposition.

• Wiring at level of calls,
messages, or IPC does not scale
up well.

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 6

Second Factor: Assembly.

snapshot

snapshot

at time t0

at time t1

snapshot
at time t2

• Systems may change form (components
and wiring) while they are running

• Routine property of systems and
software, not unusual.

• Wiring in snapshots indicatesOperation
• Intersnapshot gaps indicateAssembly
• Operation+Assembly=Behaviour.
• Described with wiring, this is

heavyweight and complex.
• Contrast with lightweight way in which

assembly happens in code (pointer
manipulations).

• Complexity comes from viewing things
in wiring terms.

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 7

Third Factor: Manufacturing

manufacturing
relationships

• Behaviour
(operation+assembly)
intertwined with
manufacturing—e.g., classes.

• In OOD, classes are where
behaviour is defined, but the
diagrams showing class
relationships do not themselves
give the system picture, which
must be inferred from details in
the class descriptions or
diagrammed as a second-class
abstraction in relation to
classes.

• Messy, difficult-to-separate
soup of details. Does not scale

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 8

Essence of Use Case Maps

Use case maps raise the level of abstraction by simplifying all
three of these complexity factors:
• Operation. Wires are replaced as connective tissue by cause-

effect paths.
• Assembly. Sequences of snapshots are eliminated. Changing

wirings between them are eliminated. Change is modeled as the
movement of components into and out of slots.

• Manufacturing. Use case maps are first-class models in their
own right that may be developed independently of manufacturing
details, but related to them at any convenient time.

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 9

UCMs: Records of Finger-Pointing Sequences

• Like a road map in which any end-
to-end route may be traced with
your finger.

• No wiring: sequences traced are
cause-effect sequences, not
interaction sequences.

• Basically record of routes traced by
one or more such finger-pointing
sequences (called “scenarios”).

• Concurrency represented, not by
specific map notations, but by
allowing multiple scenarios to be
traced at the same time.

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 10

Notational Elements

1. paths
• of use case scenarios
• from stimulus to response
• cause-effect chains through
system
• routes for slot occupants
• first class models

2. responsibilities
• labeled points on paths
• coarse-grained units of activity
• bound to components
• high-level view

4. components
• characterized by
responsibilities
• no internal logic
• no interfaces
• fixed & slots

3. interpath
couplings
• pre/post-
conditions
• constraints
• responsibilities
• state
• components
• asynchronous/
synchronous

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 11

Paths

A path-centric
view gives a
large-scale
picture, but
loses sight of
small-scale
details.

A component-
centric view gives
a complete small-
scale picture but
loses sight of the
large-scale picture.

Other paths.

Both views
needed.

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 12

Sequences of Responsibilities

a b

c
d

e
f

s1 s2

path over structure

• close to architecture
• easily composable to give composite

pattern in compact form

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 13

Responsibilities may be Coarse-Grained

• big picture requires responsibilities to be coarse-grained
• coarse-grained responsibilities chained between

components may have to be viewed as shared

may be many
interactions here

a

c

s1 s2

e

<a b>

<c d>

s1 s2

<e f>

shared responsibilities

b

d

f

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 14

A Fax System Example

A Fax Station A Fax Station

h
u

m
a

n
 o

p
e

ra
to

r

d
u

m
b

 f
a

x

te
ln

e
t

in
te

rf
a

ce

h
u

m
a

n
 o

p
e

ra
to

r

m
a

ch
in

e

uses

us
es

us
es

uses

sm
a

rt
 f

a
x

te
ln

e
t

in
te

rf
a

ce

m
a

ch
in

e

• Develop high-level behaviour patterns without
making commitment to internal structures.

• Then bind them to any internal structure.
• Specific example of a general issue.

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 15

Negotiated Producer Consumer

RESPONSIBILIT
IES:
sp, sc: Setup
p. Produce
c. Consume
tp, tc. Teardown

p

sc

c

tc
tp

sp

FaxStation1 FaxStation2

Telephone
Network

Success path

Failure paths

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 16

Composite Map Expresses Many Possible Scenarios

sp1

sp2

sc2

S1 S2

tp2

p1
c2

sc1

tc1

tc2

tp1

p2
c1

RESPONSIBILIT
IES:
sp, sc: Setup
p. Produce
c. Consume
tp, tc. Teardown

Interpath
coupling
• telnet
constraints
• shared
responsibilities
between S1 and
S2
• local state in S1
and S2
• explain by
example —>

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 17

Selected success (P) and failure (Q)scenarios

P Q1

Q2

Both FailOne succeeds

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 18

What-If Analysis
P

Q

Q1

Q2

Can

Scenarios would have to get through the telnetconcurrently to the points marked by the
fingers (how?) and then either discover the collision and fail or invoke a tie-breaking
rule so one can succeed (must avoid both succeeding). Possible to get this far if one
side performs off-hook just as the other causes the phone to ring. Human operators can
then resolve the collision and negotiate. What about fax machines?

both
fail
this
way?

Can
one
succeed
this
way?

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 19

Factor to get Component-Centric View of One Fax Station

RESPONSIBILIT
IES:
sp, sc: Setup
p. Produce
c. Consume
tp, tc. Teardown

sp

sc

tp

p c

tc

A Fax Station

sp

sc

tp

p

c
tc

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 20

Reconnecting the Factored Maps

RESPONSIBILIT
IES:
sp, sc: Setup
p. Produce
c. Consume
tp, tc. Teardown

sp

sctp

p c

tc sp

sc tp

pc

tc

More compact but less visually informative

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 21

Internal Components of Factored Part

sp

p c

tc

A Fax Station

h
u

m
a

n
 o

p
e

ra
to

r

d
u

m
b

 f
a

x
m

a
ch

in
e

te
ln

e
t

in
te

rf
a

ce

• this is only one
possible choice
(dumb fax machine)

• could do a different
choice (intelligent
fax machine) and
then continue on
with software
decomposition for
that choice

• same approach
applies

sc

tp

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 22

A Suite of Design Models with Use Case Maps

use case maps

collaboration
graphs

message
sequence charts

visibility (uses) graphs

class relationship
diagrams

Stylized Symbols for Design Models

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 23

Filling a Gap

use

operation problem modelling

operation manufacturing

assembly

operation manufacturing

assembly

 cases

Requirements

High-level Design

Detailed Design

Implementation

“how it is manufactured”“how it works”

code

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 24

Directions for Development

Requirements

High-level Design

Detailed Design

Implementation

Tool support for UCMs
• First-class models
• Plain ordinary map
creation/maintenance
• Linked to other models
in same and different
levels
• Formalized, analyzable,
executable
• Time budgets along
paths
• Performance estimates
• Tradeoff analysis
• Visualization
•••

Use Case Maps: A New Paradigm for Attributing Behaviour to System Architecture

February 5, 1996—R.J.A. Buhr—Slide 25

Properties of Use Case Maps

• visual composition: u.c.+architecture (not just u.c. notation)
• first class
• compact big picture
• exploit human pattern-recognition
• rational, traceable progression from requirements to solutions
• wireless —> lightweight operation+assembly
• scale up
• point-to-point stimulus-response patterns (with some ripple)
• technology-independent
• concrete work products
• no free lunch —> high level view loses sight of details
• starting point for detailed design with popular methods/tools
• add value to existing methods/tools by replacing magic
• have semantic depth

