Access Control

Current Approaches and New Challenges

Carlisle Adams
School of Information Technology and Engineering
University of Ottawa

Roadmap

- Past
 - The birth of a problem and early solutions
- Present
 - The birth of connectivity and current approaches
- Future
 - The birth of ubiquity and next steps
- Conclusions

Early Days of Computing (cont'd)

- At the beginning of the computer era
 - No operating systems: humans manipulated mechanical switches and plugged in patch cords to input programs / data (in binary)

Early Days of Computing (cont'd)

Early Days of Computing (cont'd)

- Then, "executives" invented to assist user
 - Early operating systems
 - Helped with tasks of linking, loading, access to compiler, and so on
 - Sat in background waiting to be called by user

The Birth of a Problem

- Multiprogramming
 - Two or more users simultaneously on a machine (generally: multi-user, single-machine env.)
 - Need to interleave access to machine resources (scheduling, sharing, parallel use)
- "Executive" → "Monitor"
 - More active, authoritarian role
 - Software in control of machine (not user!)
 - · Needed for fairness in scheduling and sharing
 - Needed for protection

Protected Objects

- "Monitor" needs to protect
 - Memory
 - Sharable I/O devices (e.g., disks)
 - Serially reusable I/O devices (e.g., printers, tape drives)
 - Sharable programs and sub-procedures
 - Sharable data (e.g., files)

Early AC Work (Lampson, 1969)

• Formal notions of "subject", "object", access matrix

S_i	General Ledger	Payroll	Accounts Receivable
Alice	R, W	-	R
Bob	-	R, W	R
Charles	R	-	R

Present: The Birth of Connectivity

- Multiprogramming brought about the need for protection
- Networking has exacerbated this: it changed the picture in two major ways
 - Number of attackers (increased)
 - Number of protection mechanisms (decreased)

- Cryptography and Access Control remain
- Greater threat; fewer weapons
 - Increased importance of crypto and AC in networked envs.

When to use crypto and AC

- AC mechanisms
 - Used in environments that can be trusted to run a program to check whether rules are being violated
- Separation mechanisms (crypto)
 - Used when the environment is not able to run a program to check rules (e.g., on a telephone wire), or is not trusted to enforce rules even if it can check them (e.g., PC running DOS)

Current Approaches: Crypto

- Cryptographic mechanisms are reasonably available and well-understood
 - Symmetric, asymmetric, hash, signature, PRNG, ...
- Not without problems, but generally pretty good
- Networked environments bring some difficulties (key management, in particular), but Kerberos, PKI, etc., offer some help

Current Approaches: AC

- Mechanisms are less well understood (or, at the very least, are less universally recognized and adopted)
 - Many, many (bewildering array of) tools and techniques in the literature and in the market
- However, a fairly comprehensive view has emerged over the past few years that has helped to put these tools/techniques into context and into perspective

AC in Networked Environments

- Back to the access matrix:
- Networking potentially brings orders of magnitude increase in number of subjects, number of objects, and number of actions that can be performed (e.g., multinational corporation)
- Matrix is too large/sparse, too much of a bottleneck, and too limited in what it can express
 - Reduce size
 - Distribute data
 - Increase expressiveness

Size Reduction

- Role-Based Access Control (RBAC)
 - Ferraiolo, Kuhn (1992)
 - Lump subjects together in "bunches" (sets of entities with same job function) → fewer rows
- Generalized RBAC
 - Recognize different kinds of subject "bunches"
 - Role, Group, Clearance, etc.
 - Lump objects together in different "bunches"
 - · Classification, Domain, etc.
 - Lump actions together in "bunches"
 - Level-of-Risk, etc.

Fewer rows, fewer columns, less data in each cell

Data Distribution

- Store pieces of the matrix in different places
 - Access Control List (ACL)
 - Single column, stored with object
 - Capability List
 - Single row, stored with subject

(Each has advantages & disadvantages.)

- Attribute Certificate (AC)
 - Single cell, stored anywhere (object, subject, Attribute Authority, centralized database, distributed database)

(Advantages in flexibility and termination; disadvantages in performance.)

Expressiveness Improvement

- Access matrix works well for True/False decision on a small number of actions (R,W,X)
- When there is a larger number of actions, and decisions are based on sets of arbitrarilycomplex conditions, need something more powerful
 - General language for expressing rules
 - E.g., RuleML

RuleML

- Rule = Premise + Conclusion
 - = (Event + Condition) + Conclusion
- "Reaction Rule": Event not always triggered
- "Transformation Rule": Event always triggered
- "Authorization Rule": Conclusion is Permit / Deny
- "Business Rule": Conclusion is a procedure
- "Derivation Rule": Conclusion is a fact

Roadmap

- Past
 - The birth of a problem and early solutions
- Present
 - The birth of connectivity and current approaches
- Future
 - The birth of ubiquity and next steps
- Conclusions

Future: The Birth of Ubiquity

- Move from connectivity to total connectivity
 - Anytime, anywhere, with anyone
 - Mobile users, using mobile devices, to access mobile resources
 - Mobile data, going to unknown places for processing
 - Mobile agents, traveling to stationary data
 - The rise of ad hoc networks...

Is there room for cowards in our "brave new world"?

The Birth of Ubiquity (cont'd)

- What are the new challenges in a world of total connectivity?
 - Traditional W-5 of investigative inquiry:
 - Who?
 - What?
 - When?
 - Why?
 - Where?

Who?

- User has <u>multiple devices</u> (desktop, laptop, phone, PDA, ...) that s/he uses to connect to the network
 - Multiple identities; multiple personas
- Access control across identity
 - Tying together various personas when desired in order to give seamless experience to user
 - Respecting privacy when necessary (AC while preserving anonymity / pseudonymity [Brands])

What?

- Protected resources such as XML documents are often <u>hierarchically structured</u> (each part has many sub-parts) and <u>logical</u> in nature (not actually stored in any single physical place)
- Access control across ephemeral objects
 - Properly protecting all relevant pieces, wherever they (and their sub-pieces) may physically reside

When?

- For audit purposes, as well as for various legal reasons, it may be necessary to prove that a previous PERMIT / DENY decision was valid (i.e., the correct decision to have made)
- Access control across time
 - Creation, storage, and management of <u>evidence</u> with respect to access decisions over a period of months, years, or decades (even after all devices involved at time of access no longer exist)

Why?

- The reason that an access is requested can be a relevant and important part of the query
- Access control across intention
 - Purpose for a request needs to be transmitted with the request and evaluated by PDP
 - system must ensure that eventual behaviour is consistent with stated purpose (policy enforcement, both at decision time and at time of use)

Where?

- Protected objects may be requested and retrieved from many places around the globe; such accesses will cross multiple boundaries
- Access control across domains
 - Geographic / National
 - Corporate / Organizational
 - Jurisdictional / Legal
 - Technological / Medium

Roadmap

- Past
 - The birth of a problem and early solutions
- Present
 - The birth of connectivity and current approaches
- Future
 - The birth of ubiquity and next steps
- Conclusions

Conclusions

- Much progress has been made in access control since the early days of computing
- Connectivity brought challenges and required an evolution of existing mechanisms
- Ubiquity now brings even more challenges
 - Will more evolution be sufficient, or will we need revolutionary change (radical new approaches for access control) to deal with the difficulties raised by W-5 requirements?