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Abstract. Our project is concerned with how dynamic agencies (sets of collaborat-
ing agents that vary their composition and collective behaviour over time) may be
used to resolve demanding telecom problems in a flexible manner. Feature interac-
tion (FI) is being studied as an instance of such problems for which dynamic agen-
cies may be an appropriate solution. In our approach, Use Case Maps (UCMs)
provide system-wide “behaviour structures” that enable people to get a global un-
derstanding of dynamic situations. Feature interactions can be seen visually in the
UCMs and then be reasoned about and resolved by people at the UCM level. Tables
generated from these behaviour structures provide a framework for humans to add
information that will enable executable prototypes to be generated. These executable
prototypes are Fl-avoidant systems where features are modelled as competing rule
engines and interactions are detected and resolved at run time by coordinating
through a blackboard. The approach offers the promise of being scalable to practical
numbers of features and is being considered for use in future commercial systems.

1. Introduction

Whether features are implemented with conventional software techniques or with techniques
centering around agent metamodels of various kinds, dynamic situations of the kind that
give rise to feature interactions are, in the software development process, relegated to details
of software design diagrams and code. As a consequence, the overall behaviour is left to be
whatever emerges at run time. Feature interactions may then come as a surprise. Ways are
needed of making feature interaction problems more visible to software developers and of
enabling software solutions to flow from high level descriptions.

In our work, the visibility problem is addressed with a technique called Use Case Maps
(UCMs) [3][4][6][7]. UCMs provide system-wide path structures that enable people to get a
global understanding of large scale dynamic situations. Feature interactions are seen visually
in the UCMs and can be resolved by design at the UCM level. This approach arises from a
view that feature interaction is an inherent problem of distributed software that needs resolu-
tion techniques accessible to software designers and developers. The approach rises above
details, such as state transitions within components of the system and interactions between
components, while still preserving the essence of the problem, which is the composition of
events and sequences in different places in the system in unexpected ways.

Tables partially generated from the UCMs provide a framework for humans to add
information that enables executable prototypes to be generated. In the executable prototypes,
features are modelled as competing rule engines and interactions are resolved at run time by
coordinating through a blackboard. The blackboard is a prototyping convenience, not neces-
sarily a proposed practical implementation technique.



We are presenting a technique which can be usddtéxtandresolvefeature interac-
tions at design time (i.e., the UCMs and tables), empowered by arolantagent archi-
tecture that provides patterns for detection and resolution at run time (this extends a theme
presented in [18]).

For illustrative purposes, we use a running example with two common features, Origi-
nating Call Screening (OCS) and Call Forwarding (CF) [9]. OCS forbids calling numbers on
a screening list, while CF forwards incoming calls to another number. A feature interaction
occurs if some usek, whose OCS screening list includes another Mserlls useB, who
forwards calls tX through CF. This is only an example; we have applied and are continuing
to apply the approach to other features and combinations of features not described here.

Although our approach begins with UCMs as the top level view, for clarity of exposi-
tion to an audience not familiar with UCMs, the ideas are developed from the bottom up.
Section 2 describes how feature interactions may be detected and resolved in an environment
that combines Java agents and competing CLIPS (C Language Integrated Production Sys-
tem) rule engines that resolve feature conflicts through a Micmac blackboard (this environ-
ment includes a MediaPath system that simulates actual telephony). Section 3 describes how
the rules and other elements of this environment are derived in a systematic way from tables.
Section 4 describes how the tables flow from path descriptions in UCMs. Section 5 dis-
cusses where we are going with this approach and how we think others might use it.
Section 6 draws conclusions.

A more extended treatment of the ideas in this paper is contained in [5]. This work is
part of a project [8] that is concerned with the systematic design and implementation of
dynamic agencies (i.e., sets of collaborating agents that vary their composition and behav-
iour over time). From the perspective of the feature interaction community, agents are just
software components that contain logic to implement features and resolve feature interac-
tions, and that communicate with each other in the terms required by the features.

2. A Prototyping Environment, By Example

2.1 Prototype Environment Architecture

Our prototype environment is composed of several agents, which communicate with each
other through a blackboard, and a Java interface to MedigP4tlan open, standards-based
communications server produced by Mitel. MediaPath is comprised of call control software
and server telecommunication boards (voice processing, trunk, and line boards).

Micmac [15] is a coordination tool that can be used by a multi-agent environment. In
the Micmac system as developed, feature interactions are detected by the feature placing its
intentionto perform an action in the blackboard. Any other feature can then comment on the
action and the originating feature can take this advice and decide how to proceed. The agent
is reasoning about the development of an intention.

As shown in Figure 1, each agent is composed of a head and a body. The head is where
decisions are taken (rules are selected), and the body is where these decisions are carried out
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Figure 1 Coordination between agents and MediaPath through a Micmac blackboard.



(tasks are executed). The head is implemented declaratively using the CLIPS expert
system [12], and the body is implemented in Java. The head and the body of an agent also
communicate through the blackboard. The blackboard allows sistdate in one conve-

niently uniform way, communication between agents, communication between agent heads
and agent bodies, and communication between rule engines (features) in agent heads. We
developed a Java interface for Micmac so that it can be used directly by the body half, and
also by the head half whose CLIPS rules are interpreted by Jess [11], a Java implementation
of CLIPS’ essential features.

The core of Micmac is composed dfugle spacewhich is an instance of a blackboard
architecture. In such an architecture, entities (also called knowledge sources) communicate
and invoke operations on the blackboard through a publish-subscribe mechaiigabe.ig\

a set of ordered pairs calledyjles Each ingle consists of a type (saynectFrom ) and a

value (sayA). An example of a tuple that would describe a call request &aim B is

{ :connectFrom A :connectTo B:calllDid } . Identifier ingles such asalllD

as well as other features of Micmac, allow for the dynamic creation of multiple logical
blackboards inside one physical blackboard. They can also serve as a basis for implementing
security mechanisms for blackboards.

The tuple space enables coordination by allowing queries based on the matching of
tuples byanti-tuples An anti-tuple is a tuple that can be used as a query in the tuple space. In
form, it is identical to a tuple except that the value of any or all fields may be replaced by the
symbol ?’, which indicates a ‘don’t care’ condition, similarly to a template. Tuple spaces
are set up to match tuples with anti-tuples which agree in all fields except for the ones indi-
cated by the?’ query, similarly to Prolog unification.

Four operations on the tuple space have been defio&dplaces a tuple in the tuple
space peekqueries the tuple space with an anti-tuple (matching tuples will remain in the
tuple space)pick also queries the tuple space with an anti-tuple (but matching tuples will be
removed from the tuple space), arahcelremoves all matching anti-tuples from the tuple
space. Durations for tuples can also be defined.

2.2 Competing Rule Engines Communicating via a Blackboard

Coordination of call processing applications with tuple spaces is accomplished by use of a
permission/rejection mechanism among features. Features, such as the ones shown in
Figure 2 (QRIGINATING, OCS, ERMINATING, and CF), are instantiated as discrete entities
which will interact through the posting of intentions on the tuple space. These intentions,
shared between agents, can trigger advisors to prevent undesired feature interactions without
explicitly programming a solution.

Agent heads implement these features as competing CLIPS engines. This approach
based on a blackboard simplifies the interaction protocols for the collaboration among fea-
tures instantiated within an agent. It also minimizes the need for maintenance when we add,
modify, or delete features, even at run-time. This is especially true in the type of telephony
applications that interest us, where no deterministic or optimal solution is known, and where
opportunistic problem solving seems to be the most practical approach. This solution fits
well with both our application domain and the agent paradigm.

The undesirable interaction between OCS and CF, as stated in Section 1,As that
should not be allowed to connectXdahroughB. Figure 2 illustrates the feature interaction
solution between OCS and CF in terms of messages exchanged in the tuple space. In this fig-
ure, messages are posted from top to bottom, as time passes. The arrows show the messages
sent by the agents at some point in time (messages in bold ar&grdeiault feature).

First, the QIGINATING feature expresses its intention of connecAngith B by post-
ing a proposal (or poking a tuple). It then waits, for a certain amount of time, for comments
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Micmac blackboard
Figure 2 Competing rule engines communicating via a blackboard.

from other features. As comments can arrive in any order, this particular sequence is only
one of the many possible global scenarios. Other features, which received the message
(peeked using an anti-tuple), reply according to their internal set of rules. In our case, OCS
and ERMINATING permit the call betweeA andB, but CF indicates that this call has to be
forwarded toX.

The QRIGINATING feature decides its next action based on the new facts (beliefs) avail-
able. Many strategies can be defined for this decision mechanism, according to functional or
business logic. In our case, we used the notion of &&&nce which provides a priority to
the rules associated to answers received from other concurrent features. Each status received
corresponds to a specific salience withRIGNATING. From the highest priority to the low-
est, we have: PROHIBIT, FORWARDTO, and PERMIT. ThHRIGINATING feature reasons
about the comments by sorting the corresponding rules according to their salience, and uses
the one with the highest priority to decide its next move. A CLIPS engine always chooses
the highest priority rule on its agenda. The other facts are then simply retracted from the
local fact-list in order to avoid firing another rule based on those remaining facts. This
approach scales up as many features can coexist and comment on proposals using such sta-
tus, without the need forIGINATING to know how many other features are active.

The second proposal posted bRIGNATING is therefore a connection betwe&mand
X, as suggested by the ‘FORWARD POtuple received from CF. As soon as OCS peeks at
this proposal, it replies with a PROHIBIT statusXais in As screening list. From thereon,
no matter the comments from the other feature agents (remember that PROHIBIT has the
highest priority), QIGINATING will cancel the call. Comments that arrive late or that remain
unused for a specificalllD  will be ignored and eventually removed automatically by the
blackboard, after some predetermined period or some duration attached to these tuples.

This scenario illustrates the resolution of conflicts between features that are active
simultaneously. Feature interactions can usually be of three kinds: violation of assumptions,
indeterminacy, and data violation. The OCS/CF interaction falls in the first category as the
use of CF byB violates the assumptions related to the use of OCA& ®ur environment
allows for the implementation of different strategies for conflict detection and resolution
between features, and also more generally between agents.

The quick example developed here illustrates only a part of the mechanisms we want to
implement in our framework. In future implementations, we plan on using distributed and
dynamic blackboard that would enforce separation between agents and local decisions or
concerns. In the current implementation, tHRaSGINATING feature, located in the call-side
agent, receives comments on a global blackboard from all the features in the answer-side
agent. Itis in charge to make the final decision while all other features act as advisors, what-
ever their location. This RGINATING feature should however receive only one comment
from the answer-side agent, which would result from a local decision. Local decisions
should be taken first in the call-side agent, and then in the answer-side agent (if necessary)
before further negotiations are undertaken. However, for the termination of the negotiation



a) Originating Call Screening b) Call Forwarding

(defrule prohibit (defrule forward
(declare (salience 2)) ?c <- (call)
?c <- (callTo ?to) (forward ?to)
(prohibit ?to) =>

= (doForward ?to)
(doProhibit) (retract ?c))
(retract ?c))

(defrule permit

(declare (salience 1))
?c <- (callFrom ?from)

(doPermit)
(retract ?c))

Figure 3 CLIPS rules for OCS and CF.

process to be guaranteed, one feature should always be in charge of making the final deci-
sion after some mutual agreement. All the other features would then go back to a safe state.

2.3 Examples of CLIPS Rules and MediaPath/Micmac Outputs

An agent head can be described as one or many CLIPS engines that contain local facts and
rules. In our example, we have a single type of agent (User Agent) with two possible roles
(Call-Side and Answer-Side), and four rule engines. Two of the latter, namely OCS
(Figure 3a) and CF (Figure 3b), are briefly discussed here.

OCS has two rules with different local saliences. A rule is fired when facts match the
LHS of the arrow£=>), and then actions on the RHS are performed. Required facts (or pre-
conditions) are asserted when the agent’s body peeks at the tuple-spageofithite |,
which has priority over rul@ermit , is invoked when a call connection is requested and
when the destinatior?{o) is on the screening list. Relating this to our examfiéescreen-
ing list (within his instance of this OCS CLIPS engine) would be a fact-list containing
(prohibit X) . Upon firing, the rule will first send a comment to the tuple-space by calling
a doProhibit  function handled by the Java body. Then, it will retract all facts matching
callTo X in its fact-list.

Thepermit rule of OCS only requires a call connection request in order to be invoked.
Upon firing, the Java functiodoPermit  will post (poke) a comment (containing a PER-
MIT status) to the tuple-space, and then the matching facts get removed from the fact-list.

CF is composed of only one rule, which is similar in form to O@shibit  rule.
Ruleforward is fired upon the arrival of a call connection request and the presence of one
specific fact that asserts the destination (bourgdtg to which calls should be forwarded.

The RHS also makes use of an action that sends a comment to the tuplEGpaeaRDTO
To), followed again by a removal of all matching facts from the fact-list.

The QRIGINATING and ERMINATING features also use similar CLIPS rulesRMINAT-

ING has two of thembusy will emit a PROHIBIT comment when the Answer-Side is busy,
while not-busy  will simply PERMIT the call. @QIGINATING will reason about the com-
ments related to its intention by prohibiting, forwarding, or permitting the call. Three CLIPS
rules, with saliences corresponding to the different types of input comments, implement this
strategy.

The next two figures illustrate executions of these rules in the prototyping environment.
On the left, MediaPath provides telephone keypads that interface with the user for number
dialling and for ringing. Three stations are used for our example: 2000 is the call originator
(A), 2001 the forwardeB), and 2002 the answeref)( These logical phone numbers can be
connected through MediaPath either to software phones or to real physical devices.
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Figure 4 Micmac screen showing a call prohibited by OCS.

Figure 4 presents a simple case wheedtempts to calK directly, and OCS prohibits
the call request. The user agent 2000 assumes the Call-Side role, and two windows are
shown, one per CLIPS engine in the head (other may also exist). Stations 2001 and 2002 are
user agents that both assume the Answer-Side role. Their heads also contain concurrent
CLIPS engines, some of which are in the figure. New tuples in the blackboard, not shown
here for simplicity, cause facts to be asserted in local CLIPS engines by Java bodies. All
facts are ordered according to their priority, as explained in Section 2.2. After a
2000-t0-2002 connection proposal sent IRIGINATING 2000, ERMINATING 2002 fires the
not-busy rule and suggests permitting the call, while OCS 2000 firgsdtsbit  rule
and suggests prohibiting the call. OCS 2000 does so because 2002 is on its screening list
(represented by a fact in its local list). As a resuRIGINATING 2000 decides to prohibit the
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Figure 5 Micmac screen showing a call prohibited by OCS through CF.



call (rule prohibit ) as this option has the highest local salience (4). All engines then
retract the necessary facts from their respective fact-lists, and finally reinitialize themselves
(not shown in the figure). The user agent 2001 was not involved in this conversation.

In Figure 5,A attempts to calB, whose CF feature forwards all callsXoUpon the
2000-t0-2001 connection proposal sent BIENATING 2000, three comments (annotated
by (C1)) are concurrently generated by other features. OCS 2000 posts a PERMIE (as
not onAs screening list), ERMINATING 2001 does the same, and CF 2001 posts a FOR-
WARDTO (to X). Then, QRIGINATING 2000 takes the decision to forward this ¢Bll) and
therefore proposes a 2000-t0-2002 connection, as previously illustrated in Figure 2.
Although TERMINATING 2002 permits this call, OCS 2000 prohibitéd®). Therefore, since
the PROHIBIT comment has the highest salienceRIGRATING, the call is cancelled, as it
should bgD?2). This last part of the scenario is the same as the one in Figure 4.

3. Prototypes from High Level Agent Models

The most significant property of our approach is that systems are developed through a series
of levels of abstraction in which humans, with machine assistance, can manipulate abstrac-
tions at one level into the ones at the next lower level. Tables are used to express intermedi-
ate models between the prototypes of the previous section and the UCMs of the next section.
Two intermediate models are needed for the running feature interaction example of this
paper. Theagent internal modetiefines the internal behaviour of an agent. Gbeversa-

tional model describes the coordination mechanism among agents. Other models not
described here may also be needed.

3.1 Agent Internal Model

Table 1 shows the agent internal model for the example of Section 2. In this particular table,
each row represents a feature, identified by the comment column.

Table 1: Agent internal model for our telephony example.

Goal Precondition Postcondition Task Comment
1 | Process originating call Number is collected Request sentto |send_request RKIGINATING
answerer
Process originating cal|l Outgoing call conne&all permitted or pro-|check _list OCS
tion requested hibited doPermit
doProhibit
Process call request There is an incomin@aller and/or answeregiring TERMINATING
call are notified notify_caller
Process call request CF is on. There is a@aller notified of a doForward CF
incoming call Tnew destination

There are two ways to implement this table. One way (not used in Section 2) is to let
the user agents decide at run time what features to invoke, based on the feature’s precondi-
tions. In this case, only the features selected by the agent are activated. The other way (used
in Section 2) is to allow all features to be simultaneously active, with each one responding to
proposals by others. Looking ahead to practical implementations, not just prototypes, this
approach seems to offer some potential practical advantages, because it allows the dynamic
creation, modification, and removal of features with minimum effect on the agents and the
overall system maintenance.

The mapping from this table to the code described in Section 2 is systematic. Each row
(feature) is implemented as a competing CLIPS engine. The relationship between this model
and the generated code can be described by examining lines 2 and 4 of Table 1, and Figure 3.



From line 2 in the agent internal model, the code in Figure 3a is generated. Asserting
the (callTo  X) ' fact is the same as declaring the outgoing call connection request precon-
dition as true. Here, checking the list is implicitly stated as fact matching prdhibit
rule. We permit a call by having a lower saliepeemit rule that only fires if there is no
prohibiting fact that matches in theohibit  rule. From line 4 in the agent internal model,
the code in Figure 3b is generated. Asserting(@w!) ' fact states that there is an incom-
ing call, as per the precondition. Assertingfarivard ?To) ’ fact states that Call For-
warding is on, and that calls should be forwarded to the destinatioh (The forward rule
is invoked if the preconditions are true, forwards the request, and retracts the incoming call
condition. This last action we interpret as asserting the postcondition that the caller has been
notified of the new destination.

3.2 Interagent Conversational Model

The conversational model (Table 2) identifies the messages that must be exchanged for the
agents to cooperate and negotiate with each other.

Table 2: Interagent conversational model for our telephony example.

Received Sent Comment
1 Prop(:connectFrora :connectTd) ORIGINATING
2 |Prop(:connectFrora :connectTdy) |PERMIT | PROHIBIT OCS
3| Prop(:connectFrora :connectTd) |PERMIT | PROHIBIT ERMINATING
4 |Prop(:connectFrora :connectTdo) |CProp(:connectFrora :connectTd) CF
5| CProp(:connectFroma :connectTd) |Prop(:connectFrora :connectTd) ORIGINATING

Table 2 includes four types of messages, namely: Prop, CProp, PERMIT, and PRO-
HIBIT. The set of the four messages implements a generic agent negotiation mechanism. In
our system, an agent that wants to communicate with another agent sends a proposal (Prop
message) and waits for a response. The responses the agent can get to its proposal can be a
counter proposal (CProp), proposal acceptance (PERMIT), or proposal rejection (PRO-
HIBIT). If an agent gets a proposal or a counter proposal, then it needs to evaluate the pro-
posal and send a response back.

Line 4 of the conversational model shows that when an agent (an answerer), who is
subscribed to Call Forwarding, receives a connection proposal, it responds by sending a
counter proposal recommending to connect to user agestead. User agehts the desig-
nated agent for handling the calls of the receiver of the original proposal. Line 5 shows the
response of the user agent to the counter proposal in line 4. The user agent accepts the
counter proposal by initiating a new connection proposiiNote thaf, b, andf are formal
parameters in this table.

The conversational messages captured by the model are implemented as shown in
Figure 2. Proposals correspond to tuples, and responses to proposal are implemented as
tuples with status fields. The PERMIT and PROHIBIT messages are implemented respec-
tively by the PERMIT and PROHIBIT statuses in tuples. The counter proposal in line 4 is
implemented by the Tuple(FORWARDTO f) status. Note that in the implementation, a new
field (calllD) is added to each message to distinguish the different call sessions.

Figure 6 summarizes the transformation of rows from the table expressing the agent
internal model into rules of an independent CLIPS engine. In this specific figure, the Call
Forwarding engine is found within the head of the user agent (Answer-Side role). It also
illustrates a message sent by the CF feature to the Micmac blackboard at run time. This mes-
sage is formatted according to the corresponding row in the interagent conversational model.



Plan from Table 1

4 Process call CFison. Caller notified ofa | doForward CF [~~~ = - -~ ‘
request Incoming call new destination .
d 9 CLIPS engine from
Micmac blackboard from Figure 2 Figure 2 and Figure 3a
{:callFromA :callToB :calllD id :status Tuple(FORWARDT®) } CF
(defrule forward
A 2¢ < (call)
I (forward ?to)
Conversational message from Table 2 = (doForward ?to)
|4 | Prop(:connectFrom a :connectTo b1 CProp(:connectFrom a :connectl'l'o f) | CF (retract 2c))

Figure 6 From internal and conversational models to CLIPS rules and messages.

The conversation model describes protocols for direct negotiation between agents. The
blackboard merely acts as an underlying medium, without reasoning about the progression
of a negotiation. In its current preliminary form, this negotiation mechanism can be seen as a
simplified version of the negotiation protocol discussed in [13]. However, we intend to
extend it with the OPI model (Obligation-Permission-Interdiction) [2], which allows us to
structure goals in a hierarchy of alternative, parallel, and sequential sub-goals. The OPI
model is based on a deontic logic with formal propagation rules for its modalities (O, P, and
[) and for acceptability. It allows for the automated reasoning about goal satisfaction, even in
the presence of conflicting goals (this is solved with the noti@ostiattached to modalities
that are not satisfied). This model appears to be more expressive than the one in [13] because
goals hierarchies can be used directly as messages for proposals (intentions), composite
goals are of two kinds (parallel or sequential), agents involved in a negotiation might have
different goal hierarchies (subscribed features), and the determination of acceptability is for-
mal and decidable, even in the presence of costs attached to modalities.

4. High Level Agent Models from a Scenario-Path Notation

4.1 Scenario Paths for Agent Systems

Scenario paths provide a means of representing the “structure of behaviour” for a whole sys-
tem directly, in diagrams that are above the level of messages and protocols. The diagrams
(called UCMSs) show wiggly lines depicting scenario paths superimposed on sets of boxes
representing system components (e.g., agents). UCM paths start at points where events
occur. They end at points where the effects of the events have @@ty rippling

through the system. In between, they touch components that perform responsibilities, in the
causal order in which the responsibilities are performed. Responsibilities are high-level
activities that can be refined in terms of functions, tasks, procedures, events, and so forth.
Composite diagrams that contain many possible paths (e.g., Figure 7), with common parts
superimposed, provide a condensed view of many possible different behaviours, including
ones involving concurrency. UCMs do reptecifybehaviour, they describe fgth structure

in a way that enables a person to visualize scenarios by mentally moving tokens along the
paths.

Particularly useful for feature interaction problems is the fact that UCMs are able to
provide visual descriptions of dynamic situations at the whole system level. This is accom-
plished by expressing UCMs as compositions of sub-UCMs that may be dynamically
selected while the system is running.stub notation (diamond-shaped) indicates where
sub-UCMs may be plugged in. The sub-UCMs are accordingly galigdins A UCM with
dynamic stubs shows a dynamically modifiable “behaviour structure”. The structure is mod-
ified dynamically by selecting an appropriate plug-in for a stub when a scenario token
reaches the stub (according to assumed system conditions at that point).



Figure 7 shows a UCM for a system of user agents that handles telephone calls for
users in some network. The plug-ins represent telephony features, including default features
for the QRIGINATING and ERMINATING ends of a call and also two additional features,
namely OCS (Originating Call Screening) and CF (Call Forwarding). The defaults are
viewed as features at the same level as OCS and CF. Feature interaction results when certain
combinations of plug-ins are selected under certain system conditions, leading to sys-
tem-wide paths that violate the intended behaviour of the features. The UCM allows a per-
son to visualize the dynamic situations that give rise to feature interactions. The
visualization is in terms that can be related to how agents are implemented.

Figure 7 shows, at its center, a path taken by a call request through a set of software
agents to a phone ringing at some remote user location. The CSP (Call-Side Processing) and
ASP (Answer-Side Processing) stubs have dynamically selected plug-ins for different fea-
tures (both stubs are shown in both agents to show that the situation is symmetrical, in prin-
ciple, although only one direction is shown). At the top of the figure is shown a set of
plug-ins (the default ones) that cause no problems. At the bottom of the figure is shown
another set that, when selected in this particular combination, may cause a feature interac-
tion. The way to read this diagram is to trace a normal call through the top set of plug-ins
and to trace a forwarded call through the bottom set. One of the plug-ins is the same in both
sets (the defaultERMINATING), but is duplicated so the diagram can be read as suggested.
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Figure 7 A telephory feature-interaction exaofe with apreliminary UCM.



The main UCM at the center of this diagram includes a path that winds through a set of
Answer-Side user agents (the grey path that diverts from gointhe ASP stub). The grey
shading underneath some of the black path segments emphasizes that this diversion causes
the route to continue “underneath” for a different agent. The extra shading is not really nec-
essary once you understand the meaning of the diagram (the diversichvironid not go
back into the same agent, by definition, so what follows would have to involve a different
agent). The map includes the possibility that several diversions within the Answer-Side set
of agents may occur.

The default @IGINATING plug-in describes the default behavior when the caller is not
subscribed to any feature. The plug-in performsstitereqresponsibility which causes the
caller to send a request for a call connection to the answerer user agent (that a request must
be sent isnferred from the fact that the next point along the path is the ASP stub in the
another agent).

The default ERMINATING plug-in describes the default behavior when the answerer is
not subscribed to any feature. The plug-in starts with an OR-fork. If the user is busy, the path
labeledbusyis followed and the caller is notified that the answerer is busy. Path labels (itali-
cized on the map) represent conditions or guards attached to a particular path segment. Oth-
erwise the scenario proceeds to an AND-fork. One path of this leads to a RING static stub
(for which the unique plug-in is not provided here) that notifies the answerer, for example by
ringing a phone device. The other path notifies the caller of call progress.

The OCS plug-in would be selected for the CSP stub when the caller is subscribed to
the Originating Call Screening feature. The path begins by checking the OCS list. If the
dialled number is on the list, then the connection is refuse, otherwise the caller is permitted
to connect to the dialled number. This is shown on by the OR-fork and path labels that fol-
low the checkresponsibility.

The CF plug-in would be selected for the ASP stub when the answerer is subscribed to
the Call Forwarding feature, and system conditions at the time of entry to this stub select this
feature. The CF feature performs ftiagl-reqresponsibility which causes the incoming call
to be forwarded to another user agent, which will be responsible for processing the original
call request.

A UCM such as Figure 7 suggests that the different features (represented by plug-ins)
are competitors to fulfill the functional behaviour required by stubs. Such a UCM makes no
commitment to how the competition is to be resolved. It could be resolved by selecting only
one feature. However, the approach of Section 2 implements the different features as concur-
rent, competing rule engines that resolve the competition dynamically. In this case, the stubs
are always active, and the UCM emphasizes the causal relationships between responsibili-
ties, not necessarily the temporal relationships. Observe that UCMs make no commitment to
which approach is taken.

4.2 Scenarios With and Without Feature Interaction

Specific scenarios may be expressed in path terms by selecting a path of interest, selecting a
particular set of plug-ins for the stubs of the path, and redrawing the path to include the
plug-ins explicitly. The next two figures show trouble-free UCMs that result from doing this

for Figure 7. In Figure 8, the OCS plug-in permits the call in ageAgentB’s CF plug-in

is not activated, so theeERMINATING feature checks whether the answerer is busy, which is

not the case here. In Figure 9, the OCS plug-in prohibits the c4)ldaad agenA is then

notified accordingly. Figure 10 shows a feature-interaction-prone composition involving
Originating Call Screening and Call Forwarding. This is a feature interactioisibnAs

OCS list.
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Figure 11 shows a different stubbed UCM (compare with Figure 7) that avoids any pos-
sibility of the above feature interaction by routing the forwarding path back through the call-
ing agent to check if the intended forward-to number is forbidden. This is the UCM that was
implemented in our prototype, not the one in Figure 7. We can observe that the paths in
Figure 11 emerge from the rules and the execution scenarios in the simulation (Figure 3 and
Figure 5). In general, redesigning a main UCM like this could require redesigning the
plug-ins, just like adding new features might require redesigning the stubs and their context
(and possibly agent heads and bodies).
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Figure 11 Feature interaction resolution with a final UCM.

For several years, several academic research groups and industrial design teams have
used UCMs in the design of real-time, distributed, and object-oriented systems. Their intro-
duction into existing design processes was eased by the fact that people naturally use similar
(although less precise and less formal) techniques for expressing scenarios visually with
lines going through components [4]. We believe that UCMs can help a person to visualize,
reason about, and resolve feature interaction problems in systems of agents at a high level of



abstraction, even before any commitment to design or implementation details such as mes-
sages, negotiations and architectures. The close relationship of UCMs to BDI models of
agents enables this thinking to be related to agent implementations in a systematic manner,
as will now be explained.

4.3 From Use Case Maps to Intermediate Agent Models

The nature of the relationship between UCMs and the intermediate agent models of
Section 3 is summarized in Figure 12. Applying the mapping rules illustrated in Figure 12 to
the UCM of Figure 7 leads to the agent internal model of Table 1. UCMs are, in general,
incomplete as system specifications, so human intelligence is required to produce agent
internal models from UCMs. The closeness of the concepts is helpful, but the process is not
simply one of linearly filling in details. For example, using Figure 7 as the starting point
requires that paths crossing the user agent in both roles must be mentally combined to get an
agent-centric picture that covers all the possibilities expressed by the UCM.

The causal sequences in UCMs continue to be causal sequences as far as the agent
internal model is concerned (e.g., the concept is that a task in one agerdusetasks of
other agents to be activated). The causal relationship is defined by UCM paths and the causal
mechanismis defined by the conversational model. In general, we visualize that different
conversational models will be identified for different purposes, but this example does not
illustrate this.

5. Discussion

5.1 Putting the Pieces Together

The approach was described from the bottom up. Here is how we see it from the top down:

1) UCMs are used to discover agents and their high level behaviour. They give the system
picture in a way that includes dynamic situations explicitly. UCMs are precise struc-
tural entities that contain enough information in highly condensed form to enable a per-
son to visualize system behaviour.

2) A relatively conventional agent internal model is derived partly from UCMs, partly
from human input, and partly from standard patterns.

3) The conversational model is derived from the coordination in UCM models and from
the agent internal model. These intermediate models aim to provide the transition
between UCMs and implementations.

4) Each plan from the agent internal model is transformed into rules of an independent
CLIPS engine, following the message syntax suggested in the conversational model.
This leads to executable high level prototypes that include only some aspects of practi-
cal agent systems (the aspects concerned with controlling dynamic situations involving
multiple agents).

inter-agent path segments
imply agent coordination

I preconditions apply postconditionsapply
goa here here
¥ R STATIC /
»/ } ag €S b
— °
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Figure 12 From UCMs to agent internal and conversational models.



A novel aspect of our approach is its constructive nature. Systems are developed
through a series of levels of abstraction in which humans, with machine assistance, can
manipulate abstractions at one level into abstractions at the next lower level.

UCMs do notprovethat there could be feature interactions. They are intendaduo
alize potential interaction at an early stage of the design process. A more formal analysis of
UCMs would require the use of formal languages such as OPI or LOTOS. We already devel-
oped several examples where UCMs have guided the drafting and validation of LOTOS
specifications (e.qg., [1]).

We are using this approach to investigate some difficult issues in the design and devel-
opment of practical agent systems [8]. We hope that this approach will help customers and
system designers to communicate better about requirements, provide a systematic process
for transforming requirements into metalevel agent logic (and hence into software imple-
mentations), and help with system evolution by providing a high level reference for making
detailed changes.

5.2 Scalability Issues

A key issue is scaleup. The running example of this paper illustrated only a small number of
features. While this was enough to convey the concepts, more features must be included to
demonstrate practicality. We are currently experimenting with adding more features to our
models. So far, the results are encouraging. The UCM modelling effort does not yet seem to
blow up as the number of features increases, because similarities in path signatures start to
emerge at both the stub and plug-in level (such signatures are a form of UCM “pattern”). We
are hopeful that such patterns will reduce the combinatorial problem to manageable propor-
tions in UCM models.

Our agent-based approach also allows for the division of the system’s hundreds of fea-
tures into agents that contain far fewer (the ones subscribed by individual users). This divi-
sion implies feature interaction avoidance since it greatly limits the number of features
which have to be considered for resolution both at run and design time. Additionally, the
agent framework provides patterns tuned to solve the specific problems which make up the
feature interaction problem. For example, resource allocation problems are managed by sev-
eral patterns which are both inside of and between agents [16].

The rule selection strategy implemented in this prototype is based on local salience
with fixed priorities. More flexible dynamic priority schemes are being considered. The
authors are collaborating with Barbuceanu [2] and others to extend saliences into a system of
dynamic priorities based on the OPI model, thus improving the flexibility and scalability of
the approach.

We explained earlier that we only used blackboards as a simple way of modeling all
kinds of communication, without necessarily committing to them for actual applications.
However, this does not mean blackboards cannot be practical in networks. High speed com-
munications and generic languages to provide for component coordination (like KQML [17]
and the FIPA [10] protocols) are changing assumptions about the lack of scalability and
security of blackboards. With these developments, making blackboards practical should be
possible by techniques such as structuring them in a hierarchical way and dynamically creat-
ing and destroying localized ones when required. Distributing the blackboards would also
augment the security and the computing power. Each enterprise could own its own local
physical blackboard (with their own security policies), and each user could provide local
computing power through a personal computer.



6. Conclusions

This paper shows by example how to apply a novel approach being developed for the sys-
tematic design and implementation of dynamic agencies to the problem of feature interac-
tion. In this approach, Use Case Maps provide system-wide “behaviour structures” that
enable people to get an early and global understanding of dynamic situations. Features are
modelled as dynamic plug-ins for stubs in the UCMs. Feature interactions are seen visually
and can be reasoned about and resolved by people at the UCM level. Tables generated from
the UCMs provide a framework for humans to add information that will enable executable
prototypes to be generated. These prototypes are Fl-avoidant systems where features are
modelled as competing rule engines and interactions are detected and resolved at run time by
coordinating through a blackboard. The approach offers the promise of being scalable to
practical numbers of features and of being practical for future commercial systems.
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