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Abstract. Our project is concerned with how dynamic agencies (sets of collaborat-
ing agents that vary their composition and collective behaviour over time) may be
used to resolve demanding telecom problems in a flexible manner. Feature interac-
tion (FI) is being studied as an instance of such problems for which dynamic agen-
cies may be an appropriate solution. In our approach, Use Case Maps (UCMs)
provide system-wide “behaviour structures” that enable people to get a global un-
derstanding of dynamic situations. Feature interactions can be seen visually in the
UCMs and then be reasoned about and resolved by people at the UCM level. Tables
generated from these behaviour structures provide a framework for humans to add
information that will enable executable prototypes to be generated. These executable
prototypes are FI-avoidant systems where features are modelled as competing rule
engines and interactions are detected and resolved at run time by coordinating
through a blackboard. The approach offers the promise of being scalable to practical
numbers of features and is being considered for use in future commercial systems.

1.  Introduction

Whether features are implemented with conventional software techniques or with tech
centering around agent metamodels of various kinds, dynamic situations of the kin
give rise to feature interactions are, in the software development process, relegated to
of software design diagrams and code. As a consequence, the overall behaviour is le
whatever emerges at run time. Feature interactions may then come as a surprise. W
needed of making feature interaction problems more visible to software developers a
enabling software solutions to flow from high level descriptions. 

In our work, the visibility problem is addressed with a technique called Use Case 
(UCMs) [3][4][6][7]. UCMs provide system-wide path structures that enable people to 
global understanding of large scale dynamic situations. Feature interactions are seen v
in the UCMs and can be resolved by design at the UCM level. This approach arises 
view that feature interaction is an inherent problem of distributed software that needs r
tion techniques accessible to software designers and developers. The approach rise
details, such as state transitions within components of the system and interactions b
components, while still preserving the essence of the problem, which is the composit
events and sequences in different places in the system in unexpected ways. 

Tables partially generated from the UCMs provide a framework for humans to
information that enables executable prototypes to be generated. In the executable pro
features are modelled as competing rule engines and interactions are resolved at run 
coordinating through a blackboard. The blackboard is a prototyping convenience, not 
sarily a proposed practical implementation technique.
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We are presenting a technique which can be used to detect and resolve feature interac-
tions at design time (i.e., the UCMs and tables), empowered by an FI-avoidant agent archi-
tecture that provides patterns for detection and resolution at run time (this extends a
presented in [18]). 

For illustrative purposes, we use a running example with two common features, O
nating Call Screening (OCS) and Call Forwarding (CF) [9]. OCS forbids calling numbe
a screening list, while CF forwards incoming calls to another number. A feature intera
occurs if some user A, whose OCS screening list includes another user X, calls user B, who
forwards calls to X through CF. This is only an example; we have applied and are contin
to apply the approach to other features and combinations of features not described he

Although our approach begins with UCMs as the top level view, for clarity of exp
tion to an audience not familiar with UCMs, the ideas are developed from the bottom
Section 2 describes how feature interactions may be detected and resolved in an envir
that combines Java agents and competing CLIPS (C Language Integrated Productio
tem) rule engines that resolve feature conflicts through a Micmac blackboard (this en
ment includes a MediaPath system that simulates actual telephony). Section 3 describ
the rules and other elements of this environment are derived in a systematic way from
Section 4 describes how the tables flow from path descriptions in UCMs. Section 5
cusses where we are going with this approach and how we think others might u
Section 6 draws conclusions.

A more extended treatment of the ideas in this paper is contained in [5]. This wo
part of a project [8] that is concerned with the systematic design and implementati
dynamic agencies (i.e., sets of collaborating agents that vary their composition and 
iour over time). From the perspective of the feature interaction community, agents ar
software components that contain logic to implement features and resolve feature in
tions, and that communicate with each other in the terms required by the features. 

2.  A Prototyping Environment, By Example

2.1  Prototype Environment Architecture

Our prototype environment is composed of several agents, which communicate with
other through a blackboard, and a Java interface to MediaPath [14], an open, standards-base
communications server produced by Mitel. MediaPath is comprised of call control sof
and server telecommunication boards (voice processing, trunk, and line boards).

Micmac [15] is a coordination tool that can be used by a multi-agent environme
the Micmac system as developed, feature interactions are detected by the feature pla
intention to perform an action in the blackboard. Any other feature can then comment o
action and the originating feature can take this advice and decide how to proceed. Th
is reasoning about the development of an intention.

As shown in Figure 1, each agent is composed of a head and a body. The head is
decisions are taken (rules are selected), and the body is where these decisions are ca

Figure 1  Coordination between agents and MediaPath through a Micmac blackboard.
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(tasks are executed). The head is implemented declaratively using the CLIPS 
system [12], and the body is implemented in Java. The head and the body of an age
communicate through the blackboard. The blackboard allows us to simulate, in one conve-
niently uniform way, communication between agents, communication between agent 
and agent bodies, and communication between rule engines (features) in agent hea
developed a Java interface for Micmac so that it can be used directly by the body ha
also by the head half whose CLIPS rules are interpreted by Jess [11], a Java impleme
of CLIPS’ essential features.

The core of Micmac is composed of a tuple space, which is an instance of a blackboar
architecture. In such an architecture, entities (also called knowledge sources) commu
and invoke operations on the blackboard through a publish-subscribe mechanism. A tuple is
a set of ordered pairs called ingles. Each ingle consists of a type (say connectFrom ) and a
value (say A). An example of a tuple that would describe a call request from A to B is
{ :connectFrom A :connectTo B :callID id } . Identifier ingles such as callID ,
as well as other features of Micmac, allow for the dynamic creation of multiple log
blackboards inside one physical blackboard. They can also serve as a basis for implem
security mechanisms for blackboards.

The tuple space enables coordination by allowing queries based on the match
tuples by anti-tuples. An anti-tuple is a tuple that can be used as a query in the tuple spa
form, it is identical to a tuple except that the value of any or all fields may be replaced b
symbol ‘?’, which indicates a ‘don’t care’ condition, similarly to a template. Tuple spa
are set up to match tuples with anti-tuples which agree in all fields except for the one
cated by the ‘?’ query, similarly to Prolog unification.

Four operations on the tuple space have been defined: poke places a tuple in the tuple
space, peek queries the tuple space with an anti-tuple (matching tuples will remain in
tuple space), pick also queries the tuple space with an anti-tuple (but matching tuples w
removed from the tuple space), and cancel removes all matching anti-tuples from the tup
space. Durations for tuples can also be defined.

2.2  Competing Rule Engines Communicating via a Blackboard

Coordination of call processing applications with tuple spaces is accomplished by us
permission/rejection mechanism among features. Features, such as the ones sh
Figure 2 (ORIGINATING, OCS, TERMINATING, and CF), are instantiated as discrete entit
which will interact through the posting of intentions on the tuple space. These inten
shared between agents, can trigger advisors to prevent undesired feature interactions
explicitly programming a solution.

Agent heads implement these features as competing CLIPS engines. This ap
based on a blackboard simplifies the interaction protocols for the collaboration amon
tures instantiated within an agent. It also minimizes the need for maintenance when w
modify, or delete features, even at run-time. This is especially true in the type of telep
applications that interest us, where no deterministic or optimal solution is known, and w
opportunistic problem solving seems to be the most practical approach. This solutio
well with both our application domain and the agent paradigm.

The undesirable interaction between OCS and CF, as stated in Section 1, is A
should not be allowed to connect to X through B. Figure 2 illustrates the feature interactio
solution between OCS and CF in terms of messages exchanged in the tuple space. In
ure, messages are posted from top to bottom, as time passes. The arrows show the m
sent by the agents at some point in time (messages in bold are from A’s default feature).

First, the ORIGINATING feature expresses its intention of connecting A with B by post-
ing a proposal (or poking a tuple). It then waits, for a certain amount of time, for comm
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from other features. As comments can arrive in any order, this particular sequence i
one of the many possible global scenarios. Other features, which received the m
(peeked using an anti-tuple), reply according to their internal set of rules. In our case
and TERMINATING permit the call between A and B, but CF indicates that this call has to b
forwarded to X.

The ORIGINATING feature decides its next action based on the new facts (beliefs) a
able. Many strategies can be defined for this decision mechanism, according to functio
business logic. In our case, we used the notion of local salience, which provides a priority to
the rules associated to answers received from other concurrent features. Each status 
corresponds to a specific salience within ORIGINATING. From the highest priority to the low-
est, we have: PROHIBIT, FORWARDTO, and PERMIT. The ORIGINATING feature reasons
about the comments by sorting the corresponding rules according to their salience, an
the one with the highest priority to decide its next move. A CLIPS engine always ch
the highest priority rule on its agenda. The other facts are then simply retracted fro
local fact-list in order to avoid firing another rule based on those remaining facts.
approach scales up as many features can coexist and comment on proposals using s
tus, without the need for ORIGINATING to know how many other features are active.

The second proposal posted by ORIGINATING is therefore a connection between A and
X, as suggested by the ‘FORWARDTO X’ tuple received from CF. As soon as OCS peeks
this proposal, it replies with a PROHIBIT status as X is in A’s screening list. From thereon
no matter the comments from the other feature agents (remember that PROHIBIT h
highest priority), ORIGINATING will cancel the call. Comments that arrive late or that rem
unused for a specific callID  will be ignored and eventually removed automatically by t
blackboard, after some predetermined period or some duration attached to these tuple

This scenario illustrates the resolution of conflicts between features that are 
simultaneously. Feature interactions can usually be of three kinds: violation of assump
indeterminacy, and data violation. The OCS/CF interaction falls in the first category a
use of CF by B violates the assumptions related to the use of OCS by A. Our environment
allows for the implementation of different strategies for conflict detection and resolu
between features, and also more generally between agents.

The quick example developed here illustrates only a part of the mechanisms we w
implement in our framework. In future implementations, we plan on using distributed
dynamic blackboard that would enforce separation between agents and local decis
concerns. In the current implementation, the ORIGINATING feature, located in the call-side
agent, receives comments on a global blackboard from all the features in the answ
agent. It is in charge to make the final decision while all other features act as advisors
ever their location. This ORIGINATING feature should however receive only one comme
from the answer-side agent, which would result from a local decision. Local deci
should be taken first in the call-side agent, and then in the answer-side agent (if nec
before further negotiations are undertaken. However, for the termination of the nego

Figure 2  Competing rule engines communicating via a blackboard.

{ :connectFrom A :connectTo B :callID id }
{ :callFrom A :callTo B :callID id :status PERMIT }
{ :callFrom A :callTo B :callID id :status PERMIT }
{ :callFrom A :callTo B :callID id :status Tuple(:FORWARDTO X) }

{ :connectFrom A :connectTo X :callID id2 }
{ :callFrom A :callTo X :callID id2 :status PROHIBIT }
.... <responses from X are not important>

{ :cancelCall id2 }

ORIGINATING

OCS

TERMINATING

CF

Call-Side (A) Answer-Side (B)

Micmac blackboard
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process to be guaranteed, one feature should always be in charge of making the fin
sion after some mutual agreement. All the other features would then go back to a safe

2.3  Examples of CLIPS Rules and MediaPath/Micmac Outputs

An agent head can be described as one or many CLIPS engines that contain local fa
rules. In our example, we have a single type of agent (User Agent) with two possible
(Call-Side and Answer-Side), and four rule engines. Two of the latter, namely 
(Figure 3a) and CF (Figure 3b), are briefly discussed here. 

OCS has two rules with different local saliences. A rule is fired when facts matc
LHS of the arrow (==>), and then actions on the RHS are performed. Required facts (or
conditions) are asserted when the agent’s body peeks at the tuple-space. Rule prohibit ,
which has priority over rule permit , is invoked when a call connection is requested a
when the destination (?To) is on the screening list. Relating this to our example, A’s screen-
ing list (within his instance of this OCS CLIPS engine) would be a fact-list contai
(prohibit X) . Upon firing, the rule will first send a comment to the tuple-space by cal
a doProhibit  function handled by the Java body. Then, it will retract all facts match
callTo X in its fact-list.

The permit  rule of OCS only requires a call connection request in order to be invo
Upon firing, the Java function doPermit  will post (poke) a comment (containing a PER
MIT status) to the tuple-space, and then the matching facts get removed from the fact

CF is composed of only one rule, which is similar in form to OCS’ prohibit  rule.
Rule forward  is fired upon the arrival of a call connection request and the presence o
specific fact that asserts the destination (bound to ?To) to which calls should be forwarded
The RHS also makes use of an action that sends a comment to the tuple space (FORWARDTO
To), followed again by a removal of all matching facts from the fact-list.

The ORIGINATING and TERMINATING features also use similar CLIPS rules. TERMINAT-
ING has two of them: busy  will emit a PROHIBIT comment when the Answer-Side is bu
while not-busy  will simply PERMIT the call. ORIGINATING will reason about the com-
ments related to its intention by prohibiting, forwarding, or permitting the call. Three CL
rules, with saliences corresponding to the different types of input comments, impleme
strategy.

The next two figures illustrate executions of these rules in the prototyping environm
On the left, MediaPath provides telephone keypads that interface with the user for n
dialling and for ringing. Three stations are used for our example: 2000 is the call origi
(A), 2001 the forwarder (B), and 2002 the answerer (X). These logical phone numbers can b
connected through MediaPath either to software phones or to real physical devices.

Figure 3  CLIPS rules for OCS and CF.

a) Originating Call Screening

(defrule prohibit

(declare (salience 2))

?c <- (callTo ?to)

(prohibit ?to)

=>
(doProhibit)

(retract ?c))

(defrule permit

(declare (salience 1))

?c <- (callFrom ?from)

=>

(doPermit)

(retract ?c))

b) Call Forwarding

(defrule forward

?c <- (call)

(forward ?to)

=>

(doForward ?to)

(retract ?c))
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Figure 4 presents a simple case where A attempts to call X directly, and OCS prohibits
the call request. The user agent 2000 assumes the Call-Side role, and two windo
shown, one per CLIPS engine in the head (other may also exist). Stations 2001 and 2
user agents that both assume the Answer-Side role. Their heads also contain con
CLIPS engines, some of which are in the figure. New tuples in the blackboard, not s
here for simplicity, cause facts to be asserted in local CLIPS engines by Java bodie
facts are ordered according to their priority, as explained in Section 2.2. Aft
2000-to-2002 connection proposal sent by ORIGINATING 2000, TERMINATING 2002 fires the
not-busy  rule and suggests permitting the call, while OCS 2000 fires its prohibit  rule
and suggests prohibiting the call. OCS 2000 does so because 2002 is on its screen
(represented by a fact in its local list). As a result, ORIGINATING 2000 decides to prohibit the

Figure 4  Micmac screen showing a call prohibited by OCS.
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Figure 5  Micmac screen showing a call prohibited by OCS through CF.

C
A

L
L

-S
ID

E
 A

G
E

N
T

A
N

S
W

E
R

-S
ID

E
 A

G
E

N
T

S

(D1)

(D2)

(C1)

(C1)
(C1)

(C2)

(C2)



then
elves

d
s 
R-

ure 2.

t

 series
bstrac-
rmedi-
ection.
f this

s not

 table,

to let
econdi-
y (used
ing to

s, this
ynamic
d the

h row
 model
igure 3. 
call (rule prohibit ) as this option has the highest local salience (4). All engines 
retract the necessary facts from their respective fact-lists, and finally reinitialize thems
(not shown in the figure). The user agent 2001 was not involved in this conversation.

In Figure 5, A attempts to call B, whose CF feature forwards all calls to X. Upon the
2000-to-2001 connection proposal sent by ORIGINATING 2000, three comments (annotate
by (C1)) are concurrently generated by other features. OCS 2000 posts a PERMIT (aB is
not on A’s screening list), TERMINATING 2001 does the same, and CF 2001 posts a FO
WARDTO (to X). Then, ORIGINATING 2000 takes the decision to forward this call (D1) and
therefore proposes a 2000-to-2002 connection, as previously illustrated in Fig
Although TERMINATING 2002 permits this call, OCS 2000 prohibits it (C2). Therefore, since
the PROHIBIT comment has the highest salience in ORIGINATING, the call is cancelled, as i
should be (D2). This last part of the scenario is the same as the one in Figure 4.

3.  Prototypes from High Level Agent Models

The most significant property of our approach is that systems are developed through a
of levels of abstraction in which humans, with machine assistance, can manipulate a
tions at one level into the ones at the next lower level. Tables are used to express inte
ate models between the prototypes of the previous section and the UCMs of the next s
Two intermediate models are needed for the running feature interaction example o
paper. The agent internal model defines the internal behaviour of an agent. The conversa-
tional model describes the coordination mechanism among agents. Other model
described here may also be needed. 

3.1  Agent Internal Model

Table 1 shows the agent internal model for the example of Section 2. In this particular
each row represents a feature, identified by the comment column.

There are two ways to implement this table. One way (not used in Section 2) is 
the user agents decide at run time what features to invoke, based on the feature’s pr
tions. In this case, only the features selected by the agent are activated. The other wa
in Section 2) is to allow all features to be simultaneously active, with each one respond
proposals by others. Looking ahead to practical implementations, not just prototype
approach seems to offer some potential practical advantages, because it allows the d
creation, modification, and removal of features with minimum effect on the agents an
overall system maintenance.

The mapping from this table to the code described in Section 2 is systematic. Eac
(feature) is implemented as a competing CLIPS engine. The relationship between this
and the generated code can be described by examining lines 2 and 4 of Table 1, and F

Table 1: Agent internal model for our telephony example.

Goal Precondition Postcondition Task Comment
1 Process originating call Number is collected Request sent to 

answerer
send_request ORIGINATING

2 Process originating call Outgoing call connec-
tion requested

Call permitted or pro-
hibited

check_list
doPermit
doProhibit

OCS

3 Process call request There is an incoming 
call

Caller and/or answerer 
are notified

ring
notify_caller

TERMINATING

4 Process call request CF is on. There is an 
incoming call

Caller notified of a 
new destination

doForward CF
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From line 2 in the agent internal model, the code in Figure 3a is generated. Ass
the ‘(callTo X) ’ fact is the same as declaring the outgoing call connection request pre
dition as true. Here, checking the list is implicitly stated as fact matching in the prohibit
rule. We permit a call by having a lower salience permit  rule that only fires if there is no
prohibiting fact that matches in the prohibit  rule. From line 4 in the agent internal mode
the code in Figure 3b is generated. Asserting the ‘(call) ’ fact states that there is an incom
ing call, as per the precondition. Asserting a ‘(forward ?To) ’ fact states that Call For-
warding is on, and that calls should be forwarded to the destination (?To). The forward rule
is invoked if the preconditions are true, forwards the request, and retracts the incomin
condition. This last action we interpret as asserting the postcondition that the caller ha
notified of the new destination.

3.2  Interagent Conversational Model

The conversational model (Table 2) identifies the messages that must be exchanged
agents to cooperate and negotiate with each other. 

Table 2 includes four types of messages, namely: Prop, CProp, PERMIT, and 
HIBIT. The set of the four messages implements a generic agent negotiation mechan
our system, an agent that wants to communicate with another agent sends a propos
message) and waits for a response. The responses the agent can get to its proposal
counter proposal (CProp), proposal acceptance (PERMIT), or proposal rejection (
HIBIT). If an agent gets a proposal or a counter proposal, then it needs to evaluate th
posal and send a response back.

Line 4 of the conversational model shows that when an agent (an answerer), w
subscribed to Call Forwarding, receives a connection proposal, it responds by sen
counter proposal recommending to connect to user agent f instead. User agent f is the desig-
nated agent for handling the calls of the receiver of the original proposal. Line 5 show
response of the user agent to the counter proposal in line 4. The user agent acce
counter proposal by initiating a new connection proposal to f. Note that a, b, and f are formal
parameters in this table.

The conversational messages captured by the model are implemented as sh
Figure 2. Proposals correspond to tuples, and responses to proposal are impleme
tuples with status fields. The PERMIT and PROHIBIT messages are implemented re
tively by the PERMIT and PROHIBIT statuses in tuples. The counter proposal in line
implemented by the Tuple(:FORWARDTO f) status. Note that in the implementation, a
field (callID) is added to each message to distinguish the different call sessions.

Figure 6 summarizes the transformation of rows from the table expressing the 
internal model into rules of an independent CLIPS engine. In this specific figure, the
Forwarding engine is found within the head of the user agent (Answer-Side role). I
illustrates a message sent by the CF feature to the Micmac blackboard at run time. Th
sage is formatted according to the corresponding row in the interagent conversational 

Table 2: Interagent conversational model for our telephony example.

 Received Sent Comment
1 Prop(:connectFrom a :connectTo b) ORIGINATING

2 Prop(:connectFrom a :connectTo b) PERMIT | PROHIBIT OCS

3 Prop(:connectFrom a :connectTo b) PERMIT | PROHIBIT TERMINATING

4 Prop(:connectFrom a :connectTo b) CProp(:connectFrom a :connectTo f) CF

5 CProp(:connectFrom a :connectTo f) Prop(:connectFrom a :connectTo f) ORIGINATING
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The conversation model describes protocols for direct negotiation between agent
blackboard merely acts as an underlying medium, without reasoning about the progr
of a negotiation. In its current preliminary form, this negotiation mechanism can be see
simplified version of the negotiation protocol discussed in [13]. However, we inten
extend it with the OPI model (Obligation-Permission-Interdiction) [2], which allows u
structure goals in a hierarchy of alternative, parallel, and sequential sub-goals. Th
model is based on a deontic logic with formal propagation rules for its modalities (O, P
I) and for acceptability. It allows for the automated reasoning about goal satisfaction, e
the presence of conflicting goals (this is solved with the notion of cost attached to modalities
that are not satisfied). This model appears to be more expressive than the one in [13] b
goals hierarchies can be used directly as messages for proposals (intentions), com
goals are of two kinds (parallel or sequential), agents involved in a negotiation might
different goal hierarchies (subscribed features), and the determination of acceptability 
mal and decidable, even in the presence of costs attached to modalities.

4.  High Level Agent Models from a Scenario-Path Notation

4.1  Scenario Paths for Agent Systems

Scenario paths provide a means of representing the “structure of behaviour” for a who
tem directly, in diagrams that are above the level of messages and protocols. The di
(called UCMs) show wiggly lines depicting scenario paths superimposed on sets of 
representing system components (e.g., agents). UCM paths start at points where
occur. They end at points where the effects of the events have ceased actively rippling
through the system. In between, they touch components that perform responsibilities,
causal order in which the responsibilities are performed. Responsibilities are high
activities that can be refined in terms of functions, tasks, procedures, events, and so
Composite diagrams that contain many possible paths (e.g., Figure 7), with common
superimposed, provide a condensed view of many possible different behaviours, inc
ones involving concurrency. UCMs do not specify behaviour, they describe its path structure
in a way that enables a person to visualize scenarios by mentally moving tokens alo
paths. 

Particularly useful for feature interaction problems is the fact that UCMs are ab
provide visual descriptions of dynamic situations at the whole system level. This is ac
plished by expressing UCMs as compositions of sub-UCMs that may be dynam
selected while the system is running. A stub notation (diamond-shaped) indicates whe
sub-UCMs may be plugged in. The sub-UCMs are accordingly called plug-ins. A UCM with
dynamic stubs shows a dynamically modifiable “behaviour structure”. The structure is 
ified dynamically by selecting an appropriate plug-in for a stub when a scenario t
reaches the stub (according to assumed system conditions at that point). 

Figure 6  From internal and conversational models to CLIPS rules and messages.

Plan from Table 1
4 Process call 

request
CF is on.

Incoming call
Caller notified of a 

new destination
doForward CF

Conversational message from Table 2
4 Prop(:connectFrom a :connectTo b) CProp(:connectFrom a :connectTo f) CF

CF
(defrule forward

?c <- (call)
(forward ?to)

=>
(doForward ?to)
(retract ?c))

CLIPS engine from
Figure 2 and Figure 3a

...
{ :callFrom A :callTo B :callID id :status Tuple(:FORWARDTO X) }

Micmac blackboard from Figure 2



lls for
atures
s,
 are
 certain
 sys-

a per-
 The

ftware
ng) and
t fea-
n prin-
et of
hown
nterac-
g-ins

in both
ed. 
Figure 7 shows a UCM for a system of user agents that handles telephone ca
users in some network. The plug-ins represent telephony features, including default fe
for the ORIGINATING and TERMINATING ends of a call and also two additional feature
namely OCS (Originating Call Screening) and CF (Call Forwarding). The defaults
viewed as features at the same level as OCS and CF. Feature interaction results when
combinations of plug-ins are selected under certain system conditions, leading to
tem-wide paths that violate the intended behaviour of the features. The UCM allows 
son to visualize the dynamic situations that give rise to feature interactions.
visualization is in terms that can be related to how agents are implemented.

Figure 7 shows, at its center, a path taken by a call request through a set of so
agents to a phone ringing at some remote user location. The CSP (Call-Side Processi
ASP (Answer-Side Processing) stubs have dynamically selected plug-ins for differen
tures (both stubs are shown in both agents to show that the situation is symmetrical, i
ciple, although only one direction is shown). At the top of the figure is shown a s
plug-ins (the default ones) that cause no problems. At the bottom of the figure is s
another set that, when selected in this particular combination, may cause a feature i
tion. The way to read this diagram is to trace a normal call through the top set of plu
and to trace a forwarded call through the bottom set. One of the plug-ins is the same 
sets (the default TERMINATING), but is duplicated so the diagram can be read as suggest

Figure 7  A telephony feature-interaction example with a preliminary UCM.
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The main UCM at the center of this diagram includes a path that winds through a
Answer-Side user agents (the grey path that diverts from point d on the ASP stub). The grey
shading underneath some of the black path segments emphasizes that this diversion
the route to continue “underneath” for a different agent. The extra shading is not reall
essary once you understand the meaning of the diagram (the diversion from d would not go
back into the same agent, by definition, so what follows would have to involve a diffe
agent). The map includes the possibility that several diversions within the Answer-Sid
of agents may occur. 

The default ORIGINATING plug-in describes the default behavior when the caller is 
subscribed to any feature. The plug-in performs the snd-req responsibility which causes the
caller to send a request for a call connection to the answerer user agent (that a reque
be sent is inferred from the fact that the next point along the path is the ASP stub in
another agent). 

The default TERMINATING plug-in describes the default behavior when the answere
not subscribed to any feature. The plug-in starts with an OR-fork. If the user is busy, th
labeled busy is followed and the caller is notified that the answerer is busy. Path labels 
cized on the map) represent conditions or guards attached to a particular path segme
erwise the scenario proceeds to an AND-fork. One path of this leads to a RING stati
(for which the unique plug-in is not provided here) that notifies the answerer, for examp
ringing a phone device. The other path notifies the caller of call progress. 

The OCS plug-in would be selected for the CSP stub when the caller is subscrib
the Originating Call Screening feature. The path begins by checking the OCS list. 
dialled number is on the list, then the connection is refuse, otherwise the caller is per
to connect to the dialled number. This is shown on by the OR-fork and path labels th
low the check responsibility. 

The CF plug-in would be selected for the ASP stub when the answerer is subscri
the Call Forwarding feature, and system conditions at the time of entry to this stub sele
feature. The CF feature performs the fwd-req responsibility which causes the incoming ca
to be forwarded to another user agent, which will be responsible for processing the o
call request.

A UCM such as Figure 7 suggests that the different features (represented by plu
are competitors to fulfill the functional behaviour required by stubs. Such a UCM mak
commitment to how the competition is to be resolved. It could be resolved by selecting
one feature. However, the approach of Section 2 implements the different features as c
rent, competing rule engines that resolve the competition dynamically. In this case, the
are always active, and the UCM emphasizes the causal relationships between respo
ties, not necessarily the temporal relationships. Observe that UCMs make no commitm
which approach is taken. 

4.2  Scenarios With and Without Feature Interaction

Specific scenarios may be expressed in path terms by selecting a path of interest, sel
particular set of plug-ins for the stubs of the path, and redrawing the path to includ
plug-ins explicitly. The next two figures show trouble-free UCMs that result from doing
for Figure 7. In Figure 8, the OCS plug-in permits the call in agent A. Agent B’s CF plug-in
is not activated, so the TERMINATING feature checks whether the answerer is busy, whic
not the case here. In Figure 9, the OCS plug-in prohibits the call to X, and agent A is then
notified accordingly. Figure 10 shows a feature-interaction-prone composition invo
Originating Call Screening and Call Forwarding. This is a feature interaction if X is on A’s
OCS list.
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Figure 11 shows a different stubbed UCM (compare with Figure 7) that avoids any
sibility of the above feature interaction by routing the forwarding path back through the
ing agent to check if the intended forward-to number is forbidden. This is the UCM tha
implemented in our prototype, not the one in Figure 7. We can observe that the pa
Figure 11 emerge from the rules and the execution scenarios in the simulation (Figure
Figure 5). In general, redesigning a main UCM like this could require redesigning
plug-ins, just like adding new features might require redesigning the stubs and their c
(and possibly agent heads and bodies).

For several years, several academic research groups and industrial design team
used UCMs in the design of real-time, distributed, and object-oriented systems. Their
duction into existing design processes was eased by the fact that people naturally use
(although less precise and less formal) techniques for expressing scenarios visual
lines going through components [4]. We believe that UCMs can help a person to visu
reason about, and resolve feature interaction problems in systems of agents at a high

CSP

Agent B

Agent A

ring
call B

OCS listCaller A
Answerer B

RING

Figure 8  Path view of “A connects to B” scenario.

ASPnotify
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OCS listCaller A

Figure 9  Path view of 
“A refuses call to X” scenario.
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Figure 10  Path view of “A allowed to call X scenario” 
(a feature interaction if X is on A’s OCS list).
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Figure 11  Feature interaction resolution with a final UCM.
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abstraction, even before any commitment to design or implementation details such a
sages, negotiations and architectures. The close relationship of UCMs to BDI mod
agents enables this thinking to be related to agent implementations in a systematic m
as will now be explained.

4.3  From Use Case Maps to Intermediate Agent Models

The nature of the relationship between UCMs and the intermediate agent mod
Section 3 is summarized in Figure 12. Applying the mapping rules illustrated in Figure
the UCM of Figure 7 leads to the agent internal model of Table 1. UCMs are, in ge
incomplete as system specifications, so human intelligence is required to produce
internal models from UCMs. The closeness of the concepts is helpful, but the process
simply one of linearly filling in details. For example, using Figure 7 as the starting p
requires that paths crossing the user agent in both roles must be mentally combined to
agent-centric picture that covers all the possibilities expressed by the UCM. 

The causal sequences in UCMs continue to be causal sequences as far as th
internal model is concerned (e.g., the concept is that a task in one agent may cause tasks of
other agents to be activated). The causal relationship is defined by UCM paths and the
mechanism is defined by the conversational model. In general, we visualize that diffe
conversational models will be identified for different purposes, but this example doe
illustrate this. 

5.  Discussion

5.1  Putting the Pieces Together

The approach was described from the bottom up. Here is how we see it from the top d

1) UCMs are used to discover agents and their high level behaviour. They give the s
picture in a way that includes dynamic situations explicitly. UCMs are precise s
tural entities that contain enough information in highly condensed form to enable a
son to visualize system behaviour. 

2) A relatively conventional agent internal model is derived partly from UCMs, pa
from human input, and partly from standard patterns.

3) The conversational model is derived from the coordination in UCM models and 
the agent internal model. These intermediate models aim to provide the tran
between UCMs and implementations.

4) Each plan from the agent internal model is transformed into rules of an indepe
CLIPS engine, following the message syntax suggested in the conversational m
This leads to executable high level prototypes that include only some aspects of 
cal agent systems (the aspects concerned with controlling dynamic situations inv
multiple agents).

Figure 12  From UCMs to agent internal and conversational models.
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A novel aspect of our approach is its constructive nature. Systems are deve
through a series of levels of abstraction in which humans, with machine assistanc
manipulate abstractions at one level into abstractions at the next lower level. 

UCMs do not prove that there could be feature interactions. They are intended to visu-
alize potential interaction at an early stage of the design process. A more formal analy
UCMs would require the use of formal languages such as OPI or LOTOS. We already 
oped several examples where UCMs have guided the drafting and validation of LO
specifications (e.g., [1]).

We are using this approach to investigate some difficult issues in the design and 
opment of practical agent systems [8]. We hope that this approach will help custome
system designers to communicate better about requirements, provide a systematic 
for transforming requirements into metalevel agent logic (and hence into software i
mentations), and help with system evolution by providing a high level reference for m
detailed changes.

5.2  Scalability Issues

A key issue is scaleup. The running example of this paper illustrated only a small num
features. While this was enough to convey the concepts, more features must be inclu
demonstrate practicality. We are currently experimenting with adding more features t
models. So far, the results are encouraging. The UCM modelling effort does not yet se
blow up as the number of features increases, because similarities in path signatures
emerge at both the stub and plug-in level (such signatures are a form of UCM “pattern
are hopeful that such patterns will reduce the combinatorial problem to manageable p
tions in UCM models.

Our agent-based approach also allows for the division of the system’s hundreds 
tures into agents that contain far fewer (the ones subscribed by individual users). Thi
sion implies feature interaction avoidance since it greatly limits the number of fea
which have to be considered for resolution both at run and design time. Additionally
agent framework provides patterns tuned to solve the specific problems which make 
feature interaction problem. For example, resource allocation problems are managed 
eral patterns which are both inside of and between agents [16].

The rule selection strategy implemented in this prototype is based on local sa
with fixed priorities. More flexible dynamic priority schemes are being considered. 
authors are collaborating with Barbuceanu [2] and others to extend saliences into a sys
dynamic priorities based on the OPI model, thus improving the flexibility and scalabili
the approach.

We explained earlier that we only used blackboards as a simple way of modeli
kinds of communication, without necessarily committing to them for actual applicat
However, this does not mean blackboards cannot be practical in networks. High spee
munications and generic languages to provide for component coordination (like KQML
and the FIPA [10] protocols) are changing assumptions about the lack of scalabilit
security of blackboards. With these developments, making blackboards practical sho
possible by techniques such as structuring them in a hierarchical way and dynamically
ing and destroying localized ones when required. Distributing the blackboards would
augment the security and the computing power. Each enterprise could own its own
physical blackboard (with their own security policies), and each user could provide 
computing power through a personal computer.
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6.  Conclusions

This paper shows by example how to apply a novel approach being developed for th
tematic design and implementation of dynamic agencies to the problem of feature in
tion. In this approach, Use Case Maps provide system-wide “behaviour structures
enable people to get an early and global understanding of dynamic situations. Featu
modelled as dynamic plug-ins for stubs in the UCMs. Feature interactions are seen v
and can be reasoned about and resolved by people at the UCM level. Tables generat
the UCMs provide a framework for humans to add information that will enable execu
prototypes to be generated. These prototypes are FI-avoidant systems where featu
modelled as competing rule engines and interactions are detected and resolved at run
coordinating through a blackboard. The approach offers the promise of being scala
practical numbers of features and of being practical for future commercial systems. 
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